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Abstract

In Inertial Confinement Fusion (ICF) experiments, achieving high surface qual-
ity for hydrogen fuel-filled capsules is critical, requiring a meticulous and time-
intensive polishing process. Surface roughness measurements, however, is labor-
intensive, time-consuming, and reliant on human operators. To automate this
evaluation process, we developed domain-adaptive machine learning model that
address the variability in polishing conditions and resulting data distributions. Do-
main classification techniques were first employed to identify distinct polishing
domains, which were then used to create a domain adaptation model for accu-
rate surface roughness prediction across varying conditions. This model enables
real-time generation of surface roughness predictions, allowing operators to make
adjustments during polishing to achieve optimal results. Our methodology has
demonstrated its effectiveness in adapting to different data domains while maintain-
ing consistent performance. Furthermore, we provide physics-based explanations
for the emergence of specific domains, enhancing the interpretability of the process.

1 Introduction

Fusion energy offers the highly desired potential of sustainable and virtually limitless source of energy,
thus providing a clean and safe alternative to fossil fuels. A significant breakthrough in this field
occurred in December 2022 at the National Ignition Facility (NIF), where an energy gain of 1.5 was
achieved in an Inertial Confinement Fusion (ICF) experiment [9]. This milestone, which produced
3.15 megajoules (MJ) of fusion energy from 2.05 MJ of laser energy, has been successfully replicated
with even greater energy gains [1]. These advancements represent a critical step toward the prospect
of development of fusion-powered generators capable of meeting future energy demands sustainably,
without producing harmful waste or emissions [11]. In ICF experiments, the quality of the spherical
shells, made of high-density carbon (HDC) [3], is crucial for successful fusion reactions [15]. These
shells, which contain hydrogen isotopes used as the fusion fuel, must be flawlessly smooth and round
to ensure uniform and symmetric implosion during the fusion process [5][12]. Defects on the shell’s
surface can cause significant instabilities, disrupting the reaction and lowering energy yields [7, 4, 13].
Therefore, the shells undergo an ultra-precision polishing process to achieve surface roughness below
10 nanometers, a requirement that presents significant manufacturing challenges.

The polishing process, however, is highly stochastic, involving the simultaneous processing of up
to 20 shells, which increases the risk of surface-damaging anomalies [10]. Traditional methods of
measuring surface roughness are time-consuming and labor-intensive, underscoring the need for
automatic monitoring techniques that can detect potential defects early and determine the optimal
time to terminate the polishing process. Recent advancements in micro-electro-mechanical systems
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Figure 1: Methodology overview
(MEMs) sensor technology and artificial intelligence have enabled the use of vibration sensors for
monitoring, which is the primary focus of this study [8].

This study aims to develop a automated surface roughness prediction model for HDC shells using
machine learning algorithms. The key challenges are the inherent variability in polishing conditions,
which leads to diverse data sets that complicate model generalization, and the difficulty in main-
taining consistent performance across different surface roughness profiles due to their variability.
Additionally, the limited availability of data for training deep learning models presents a significant
hurdle, as these models typically require large data sets for optimal performance. To overcome these
challenges, this study makes the following key contributions:

Domain Classification and Physical Explanations: The study identifies distinct domains within the
data, establishing a robust foundation for the prediction model. In addition, it provides frequency-
based physical explanations for these domains, deepening the understanding of the polishing process.

Enhanced Domain Adaptation Method: To ensure the generalizability and precision of the model
under varying polishing conditions, we introduce an enhanced domain adaptation method. This
method is designed to maintain consistent performance with variability in surface roughness profiles.

The core idea is to classify distinct vibration domains and leverage these classification results to
enhance the domain adaptation model for surface roughness predictions. This approach reduces the
manual workload, improves quality control, and increases process efficiency in automated surface
roughness prediction for HDC shells. By advancing the precision of ICF experiments, this study
contributes to the broader goal of achieving sustainable fusion energy generation.

2 Methodology

2.1 Data Collection

We started this study by mounting vibration sensors to a polishing machine and collecting data at
10,000 Hz. Data collection is structured into two stages:

Baseline Experiments: The experiments were designed to classify domains and gain insights into
the polishing process. Conducted on three polishers—blue, orange, and yellow—under identical
conditions, each polishing session lasted one hour, during which vibration data was collected. This
data was then segmented into 0.1-second intervals, resulting in time series data points with 1,000
samples each (yk). These segments were used to identify distinct vibration domains, facilitating a
better understanding of the underlying processes.

Surface Roughness Prediction: We conducted five 24-hour polishing experiments to develop a
robust and generalizable model for predicting surface roughness. In each experiment, we collected
vibration data and surface roughness measurements, which were segmented into 6-minute intervals.
The surface roughness values (Sa) for each segment were assigned using linear-log interpolation [2].
The datasets from these experiments were labeled S173, S179, S211, S233, and S238. Each 6-minute
segment (xk) resulted in data points sized 360 10,000, enabling surface roughness predictions every
six minutes throughout the polishing process. This segmentation approach ensures continuous and
timely predictions, enhancing the model’s applicability in real-time polishing operations.
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(a) KDE (loss distribution) (b) Box plots (loss distribution) (c) Energy box plots [825, 3000] Hz

Figure 2: (a) Density plots of unseen testing data highlight the separation between Blue and Yel-
low/Orange domains using a 0.03 threshold. (b) Box plots display reconstruction loss distributions,
with higher losses for the Blue polisher. (c) The EGO-MDA identified frequency band [825, 3000]
Hz reveals the energy difference between the Blue and Yellow/Orange polishers.

We first identify distinct vibration domains using baseline data, which are then leveraged as a
pre-classification step on experimental data, to improve the surface roughness model predictions.

2.2 Autoencoders for Domain Classification

An autoencoder with three hidden layers in both the encoder and decoder, and an embedding
dimension of (z = 32), was trained using Mean Absolute Error (MAE) as the loss function. A
reconstruction loss (Lk) threshold was set to differentiate domains within the data.

For physical interpretation, our aim is to identify frequency bands that capture energy differences
between domains. To achieve this, we adapted the Bayesian unsupervised EGO-MDA algorithm
[14, 6], which identifies optimal frequency bands for given spectral data. EGO-MDA employs a
gradient-free search strategy, first applying Mixture Discriminant Analysis (MDA) to determine the
best classifier with model parameters M∗. Then, Efficient Global Optimization (EGO) iteratively
searches for the frequency bands α∗ that best distinguish classes by minimizing the deviation:

D(α,M) = −2
∑

r∈{A,B}

∑
log p̂(r | E(r)(α)) + η log(|α|) (1)

where E(r)(α) represents the frequency band energy for class r, p̂(r | E(r)(α)) is the class probability,
and |α| denotes the total span of frequency bands with η as the penalty coefficient.

2.3 Surface Roughness Prediction Experiments

Following domain Classification, a neural network was designed to predict changes in arithmetic
surface roughness (∆Sa) from the vibration data, reducing the need for continuous surface roughness
measurements. The model minimizes the prediction error for the final surface roughness value
(Safinal) and incorporates a confusion metric into the loss function to improve the prediction
confidence. To quantify prediction uncertainty, the model assumes a normal confidence distribution
and applies Kullback-Leibler Divergence Loss. The baseline loss for a discrete probability distribution
and fixed scalar target is:

− logQ(x) =
1

2
log(2πσ2) +

(x− x̂)2

2σ2
(2)

The custom loss function builds on this by incorporating mean absolute error (MAE) and handling
small target values through exponentiation. A linear regularization term for σ prevents excessive
uncertainty, with scaling factors γ1 and γ2 that balance variance loss. The final KL loss is:

L(ŷ, log(σ2), y) = γ1
e|y−ŷ|

σ
+ γ2

(
σ + log(σ

√
2π)

)
(3)

Here, ŷ is the predicted ∆Sa, y the target value, and σ2 the prediction variance. γ1 and γ2 balance
accuracy and variance, optimizing for accurate and confident predictions, particularly in domain
adaptation.
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(a) Validation result for S238. (b) Test result for S211.

Figure 3: ∆Sa and confidence intervals (CI) are predicted using 6-minute interval data. The graph
cumulates predictions, projecting Sa values over time. The 50% and 90% CIs are shown with blue
and grey shading, respectively. (a) ∆Sa prediction with CI for validation data. (b) ∆Sa prediction
with CI for test data.

3 Results and Discussion

3.1 Domain Classification and Explanations

We trained the autoencoder on 80% of the samples, reserving 20% for testing, with performance
measured by reconstruction loss. Our analysis identified two distinct domains: one for the Blue
polisher and another combining the Orange and Yellow polishers. The Blue polisher exhibited
significantly higher reconstruction losses, as shown in the loss distribution (Figure 2a) and box plots
(Figure 2b). Across five experimental runs (S173, S179, S211, S233, S238), the autoencoder grouped
the Blue polisher runs (S173, S179, S233) into one domain, while the Orange and Yellow polishers
(S211, S238) formed another.

To investigate these domain differences, we applied EGO-MDA to identify frequency bands dis-
tinguishing between the Blue polisher and the combined Orange/Yellow spectra. In the 825-3000
Hz range, the Blue polisher’s energy levels were 72% and 81% higher than the Yellow and Orange
polishers, respectively (Figure 2c), explaining the observed differences between the polishers.

3.2 Automated Surface Roughness Prediction Model

The primary objective of our automated surface roughness prediction model is to enhance the
polishing process by providing accurate and reliable predictions. We focused on capturing surface
roughness trends with minimal error, using the custom KL loss as the primary metric for evaluating
model accuracy and loss. Additionally, we assessed the model’s performance within the distinct
domains identified by the autoencoder.

The prediction model was trained using 11 statistical features extracted from raw vibration data:
mean, variance, kurtosis, skewness, peak acceleration, RMS acceleration, crest factor, shape factor,
entropy, impulse factor, and margin factor. Training was conducted on data from the blue domain or
domain A (S173, S179, and S233) and subsequently validated and tested on the orange and yellow
domains or domain B (S238 and S211). The following plots illustrate the results of these experimental
runs.

The test results for S211 and S238 [Figure 3] demonstrate the model’s ability to accurately predict
changes in surface roughness (∆Sa), which were then translated into actual surface roughness values
(Sa) throughout the polishing process. The plots visually depict the model’s predictions on unseen
test data, highlighting its generalization capability across different domains.

The findings indicate that the model effectively predicts surface roughness trends, especially in the
early stages of the polishing process, which is critical to predict to determine if polishing is headed in
the right direction. However, the increasing prediction error and widening confidence intervals in
later stages underscore the challenges of real-time prediction in complex, stochastic environments
like polishing.
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4 Discussion and Future Work

4.1 Discussion

Our primary objective is to automate the prediction of surface roughness during the polishing process.
To achieve this, we developed a Domain Adaptation Prediction Model that leverages autoencoders
for domain identification. The methodology begins with domain identification, where we cluster
the distribution of reconstruction losses to identify distinct domains. Frequency-based explanations
using EGO-MDA further validate these domains, allowing us to detect similar characteristics in the
data without relying on predefined labels. Once domains are identified, the model is trained on data
from one domain A (e.g., Blue) and tested on domain B (e.g., Yellow or Orange). This cross-domain
evaluation assesses the model’s generalizability and its ability to adapt to different data distributions
resulting from variations in machine vibrations and environmental conditions.

Domain adaptation is particularly crucial in our context because the polishing process is conducted on
multiple machines. Although the polishing conditions and sensor placements are identical, variations
in internal vibrations and environmental factors can alter data distributions, resulting in distinct
domains. Our methodology ensures that the model remains effective despite these variations.

In our surface roughness prediction experiments, we conducted five runs: three with the Blue polisher
(S173, S179, S233), one with the Yellow polisher (S211), and one with the Orange polisher (S238).
This setup mirrors real-world dynamic scenarios where data originates from different machines. We
trained the model using data from the Blue domain and validated and tested it on data from the
Yellow and Orange domains. Figure 3 illustrates the testing and validation results for Domain B,
demonstrating the model’s capacity to adapt and maintain accuracy across different domains.

4.2 Future Work

Our next step is to implement the developed model for real-time surface roughness prediction with
six-minute intervals, facilitating timely decision making in operational settings. Prior to deployment,
we will conduct extensive training and testing on diverse datasets and perform inference studies to
ensure the model’s reliability and scalability in real-time environments.

Recognizing that real-world applications may involve additional domains, we will enhance the model’s
domain adaptation capabilities by developing methods to automatically identify and incorporate new
domains without compromising prediction performance. This will ensure that the model remains
generalizable and robust as more domains are introduced.

We also plan to expand our dataset by including more runs and polishers to cover a broader range of
operational conditions. This expansion will involve thorough tests in various machine configurations
and environmental settings to validate the consistency of the model accuracy in an enlarged data set.
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A Supplementary Material

A.1 Explanation on Custom Kullback–Leibler Divergence Loss

In this section, we provide a detailed explanation of the custom Kullback-Leibler (KL) Divergence
Loss function.

We begin with the definition of the KL divergence for discrete probability distributions P and Q
defined on the same sample space X :

DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
For our specific case, where the target y is a scalar value with zero variance, the KL divergence
simplifies to:

DKL(P ∥ Q) = log

(
1

Q(x)

)
Assuming that the distribution Q(x) follows a normal distribution with mean µ and variance σ2, the
probability density function is given by:

Q(x | µ, σ2) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
Taking the negative logarithm, we obtain the KL loss as:

− logQ(x | µ, σ2) =
1

2
log(2πσ2) +

(x− µ)2

2σ2

Next, we introduce the customized loss function, which incorporates the observed benefits of the mean
absolute error (MAE) and accounts for very small target values through exponentiation. Additionally,
to prevent the model from increasing uncertainty indefinitely, a linear regularization term for σ is
included. The custom loss function is defined as:

L(ŷ, log(σ2), y) = γ1
e|y−ŷ|

σ
+ γ2

(
σ + log(σ

√
2π)

)
This function combines the benefits of MAE, adjusted for small target values, with a regularization
term to control the model’s uncertainty. The scaling factors γ1 and γ2 are introduced to balance the
contribution of each component to the overall loss.

Thus, the final form of the custom KL loss function is obtained.
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