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Abstract

Galaxies grow and evolve in dark matter halos. Because dark matter is not visi-
ble, galaxies’ halo masses (Mhalo) must be inferred indirectly. We present a graph
neural network (GNN) model for predicting Mhalo from stellar mass (M∗) in sim-
ulated galaxy clusters using data from the IllustrisTNG simulation suite. Unlike
traditional machine learning models like random forests, our GNN captures the
information-rich substructure of galaxy clusters by using spatial and kinematic re-
lationships between galaxy neighbour. A GNN model trained on the TNG-Cluster
dataset and independently tested on the TNG300 simulation achieves superior pre-
dictive performance compared to other baseline models we tested. Future work
will extend this approach to different simulations and real observational datasets
to further validate the GNN models ability to generalise.

1 Introduction
In the Lambda Cold Dark Matter cosmological model [28, 4], galaxies form and evolve in dark mat-
ter halos. Cosmological simulations demonstrate that galaxies grow in tandem with their dark matter
halos according to well-measured and tight scaling relations [39]. This interdependence between
stellar mass (M∗) and subhalo mass (Mhalo) is known as the stellarhalo mass relation (SHMR).

While M∗ is observable, Mhalo must often be inferred indirectly via the SHMR due to observational
constraints. For example, galaxy clusters—the most massive gravitationally bound objects in the
Universe—are dark matter dominated, but their total mass must be measured via gravitational lens-
ing [8, 37], the Sunyaev-Zel’dovich effect [2, 22, 3], and/or visible wavelength proxies (e.g., galaxy
richness, intracluster light, etc; [30, 31]). However, these methods are unable to fully leverage galaxy
substructure within clusters to estimate their dark matter halo masses.

Therefore, we present a graph neural network (GNN) algorithm [32] for predicting Mhalo for galax-
ies in simulated cluster environments1. Compared to primitive machine learning (ML) methods like
random forests [1], a GNN can learn the substructure in neighbouring galaxies and thereby improve
halo mass predictions. Our results using the GNN demonstrate significant performance gains on the
training, validation, and an independent test set.

1https://github.com/Nikhil0504/halo_masses
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Figure 1: Flow diagram of GNN architecture used for halo mass prediction. The GNN processes
node features (xi, xj) and edge features (ϵij) through multiple unshared layers, where each layer
applies learnable functions, ϕ, which are implemented as MLPs. These unshared layers operate
in parallel across the graph structure. A pooling layer then aggregates (

⊕
) the information from

these interactions back into each node. Subsequent repetitions of these GNN layers can give it more
representational power. Finally, the output MLP, ψ, combines node features and aggregated edge
features to predict each node’s halo mass.

2 IllustrisTNG Simulation Data
The simulation data we use are large-volume, cosmological, gravo-magnetohydrodynamical sim-
ulations from the IllustrisTNG simulation suite [25]. We specifically use the TNG-Cluster [24]
simulation, a collection of zoom-in simulations centered 352 of the most massive halos (i.e., galaxy
clusters), for training and validation. Our dataset is based on the SUBFIND [35] subhalo catalogs that
were obtained from snapshot 99 (z = 0), focusing on the high-resolution components of the zoom-
in simulation. We adopt cosmological parameters from [29], using H0 = 67.74 km s−1 Mpc−1

for consistency with the IllustrisTNG simulation suite. Additional details about the TNG-Cluster
training data are provided in Appendix A. The distribution of subhalos in TNG-Cluster is shown in
Figure 4, and the selection criteria and number of samples are described in Table 2.

We test our ML models on an independent data set, the Illustris TNG300-1 hydrodynamic simulation
(hereafter TNG300; [25]). The TNG-Cluster and TNG300 simulations use the same physics and
have comparable resolutions (in the former’s zoom-in regions), but the two simulations are otherwise
independent. When reporting TNG-Cluster cross-validation results TNG300 test set results, we only
consider galaxies within 10 Mpc of all clusters with Mhalo > 1014M⊙.

3 Methods/Experiments
The primary objective of our study is to estimate Mhalo from M∗. Building on the work of [18], we
train ML models on galaxies and dark matter halos from TNG-Cluster to probe cluster environments.
Loss Functions and Evaluation Metrics. Model performance is assessed using several metrics
(presented in Table 1). Simple models are trained to minimise the Mean Squared Error (MSE), while
the GNN is optimised using Gaussian negative log-likelihood (combining MSE and log-variance
terms, per [15])2. Validation and test performance are evaluated with Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), coefficient of determination R2, Normalised Median Abso-
lute Deviation (NMAD), average offset (Bias), and Outlier Fraction (foutlier).
Random Forest Baseline Models. To establish a benchmark for subsequent comparisons with our
GNN model, we use Random Forest (RF) regression [14] as a baseline model due to its capability to
handle complex non-linear relationships between features. To further augment the simple RF model,
we compute an overdensity parameter (∆G), defined as the sum of stellar masses within a specified
radius Rmax. The RF models are configured with 100 estimators using scikit-learn [27], one of
which utilises M∗, and one which uses both M∗ and ∆G as features.
Graph Neural Networks. In our GNN model, each node represents a galaxy, with the M∗ as
the sole node feature. We construct edges between galaxy pairs separated by less than 3 Mpc [41],
connecting neighbouring nodes. These connections enable the neural network to learn interactions
between the substructure and galaxy properties within the cluster. We provide two edge features to
incorporate both the spatial and kinematic separations of galaxies: the squared Euclidean distance
between pairs of galaxy positions, and pairs of relative line-of-sight velocities.
GNN Architecture. Our GNN follows the architecture described in [41] with 8 unshared layers
and 3 sequential layers, as shown in Figure 1. Each layer is composed of a two-layer MLP with

2The negative log-likelihood objective accounts for the intrinsically varying scatter in Mhalo.

2



(a) Predicted versus true Mhalo for the TNG-Cluster val-
idation set, coloured by distance from cluster center.

(b) Predicted versus true Mhalo for the TNG300 test
set, coloured by distance from cluster center.

Figure 2: For each subfigure, we show results for the RF with only M∗ as a feature (left), the RF with
M∗ and overdensity parameter ∆G (center), and the GNN with M∗ and graph connectivity (right).

Table 1: Validation and test set performance for all models. The best metrics are underlined.
Model RMSE MAE R2 Bias foutlier NMAD

TNG-Cluster cross-validation
(Always predict mean) 0.542 0.396 0 0 0.019 0.479
RF: M∗ 0.489±0.002 0.382±0.003 0.186±0.011 −0.067±0.006 0.008±0.001 0.463±0.005

RF: M∗ +∆G 0.385±0.002 0.301±0.002 0.490±0.007 −0.124±0.004 0.008±0.000 0.367±0.002

GNN 0.273±0.010 0.209±0.009 0.745±0.019 −0.085±0.027 0.013±0.002 0.246±0.013

TNG-300 test set
(Always predict mean) 0.466 0.351 0 0 0.021 0.422
RF 0.468±0.009 0.365±0.014 0.199±0.030 −0.200±0.017 0.009±0.003 0.456±0.033

RF: M∗ +∆G 0.344±0.003 0.256±0.003 0.567±0.007 −0.048±0.001 0.022±0.001 0.293±0.006

GNN 0.242±0.013 0.184±0.010 0.785±0.023 −0.039±0.034 0.014±0.002 0.217±0.014

Note: The intrinsic scatter in Mhalo ranges from 0.42 (at log(Mhalo) = 11 M⊙) to 0.33 (at
log(Mhalo) = 13 M⊙) dex in TNG-Cluster and 0.48 dex to 0.19 dex in TNG 300 respectively.

16 hidden channels, SiLU activations [12], and 16 outputs. These operate over edges connected to
each node, using max pooling to aggregate edge information to each node 3. The node output is
concatenated with its initial feature (M∗) and passed through a 3-layer MLP. The GNN predicts two
quantities [15]: Mhalo and the expected log variance of Mhalo at a given M∗.

GNN Optimisation. We employ the METIS algorithm to partition the training set into 48 parts
(see ClusterLoader class in PyTorch Geometric [6, 11]), allowing us to handle large graph datasets
efficiently. The model is trained with the AdamW optimiser [19] at an initial learning rate of 10−2

and weight decay of 10−4. A scheduler reduces the learning rate by 0.2 if validation loss stagnates
by 10−3 for 15 epochs. Early stopping occurs after 35 epochs of no improvement, with a maximum
of 300 epochs. On an Nvidia A6000 GPU, training takes 20 minutes and inference takes under 1
second.

4 Results
Table 1 compares model performance for predicting Mhalo from galaxies residing in clusters for
the validation and test datasets. We additionally show the scatter of Mhalo in the first row, which
represents the most naive “prediction” of the sample mean. Below, we present the results for the
baseline models and GNN model. We display scatter plots of the true versus predicted masses for
the TNG-Cluster cross-validation data set in Figure 2a and TNG300 test set in Figure 2b.

The simplest RF model exhibits high error and very low predictive power.4 When we augment the
RF model with ∆G, the performance improves, demonstrating that galaxy environments contain
vital information for the SHMR. Nonetheless, the RF models systematically underpredict Mhalo for
the highest-mass galaxies and yield high error.

GNNs greatly outperform RF models, as indicated by the right-most panels of Figures 2a and 2b.
Running the same experiments using XGBoost (which is more prone to overfitting), we find a sig-
nificant improvement over RF but not enough to surpass GNNs. We find that the GNN performance

3This helps the GNN to effective capture the neighbouring features.
4In fact, for the TNG300 test set, the simplest RF model produces even higher error than the scatter inherent

to the data. We ascribe this to the RF model’s significant negative bias (i.e., systematic underprediction).
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Figure 3: Validation set RMSE as a function of distance from cluster center. Results shown for the
GNN (blue) and RF with M∗ and ∆G (orange).

on the training and validation sets translates to accurate predictions on the independent test set. For
nearly all metrics in Table 1, the GNN outperforms the RF models for cross-validation and test sets.

5 Discussion
5.1 Model performance as a function of local environment
In Figure 3, we show the cross-validation RMSE as a function of distance from the cluster center
for the GNN and RF (M∗ and ∆G) models; the GNN significantly outperforms the RF across all
distance bins. Notably, the RF model performance suffers for galaxies closer to the center of the
cluster. One potential explanation for this discrepancy is that the RF does not account for the dense
cluster environment, where interactions such as tidal stripping can lead to significant loss of Mhalo.5
In contrast, the GNN model outperforms the RF due by leveraging information from galaxy pairwise
distances and line-of-sight velocities.

5.2 Comparison against previous work
Previous studies have used ML to estimate galaxy properties from dark matter halos [16, 1], i.e. the
inverse of the problem we tackle. Some works employ feature importance from decision tree-based
methods [21, 41], while others use reinforcement learning to connect halo properties to galaxies
[23]. Convolutional neural networks (CNNs) and GNNs have also been used to predict galaxy
stellar masses from simulated halos [5, 40, 41].

Several works have used ML methods to predict cluster halo masses from observable parameters
such as X-ray brightness and Sunyaev-Zel’dovich decrements [26, 13]. [42] compare how different
cluster observables fare when pixelised as inputs to a CNN. [18] use GNNs to predict Mhalo directly
from galaxy point clouds, but their training dataset (the much smaller TNG50 simulation) does not
contain many rare galaxy clusters. Our work is the first to train and test GNNs for predicting halo
masses in the extremely overdense regime of galaxy clusters.

6 Conclusions, Limitations and Future Work
In this work, we predict Mhalo for simulated galaxies using their stellar masses, 2D projected po-
sitions, and line-of-sight velocities (i.e., x, y, vz) with the TNG-Cluster simulation for training and
TNG300 for testing. We evaluated both Random Forest (RF) models and Graph Neural Networks
(GNNs). The key findings are:

1. The GNN model significantly outperforms RF model, even when the latter is provided ∆G

as a parameter. This suggests that GNNs capture the underlying spatial relationships and
substructures within clusters, as shown in Table 1 and Figures 2 and 3.

2. The GNN maintains its predictive power when tested on the independent TNG300 dataset,
demonstrating that the model generalises across the IllustrisTNG simulation suite.

Despite our promising results, models trained on one simulation may face challenges when applied
to other simulations or real observational data. Machine learning models are often susceptible to do-

5Due to line-of-sight effects, not all galaxies at small projected distances experience significant tidal strip-
ping.
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main shift, where their performance degrades when applied to datasets that differ from their training
data [36, 17]. In our case, the comparable performance between the TNG-Cluster cross-validation
and TNG300 test datasets suggests that the GNN model may be robust to domain shift within the
IllustrisTNG suite. This robustness could be attributed to the GNN’s ability to learn generalizable
symbolic relationships [10]. Further tests using other simulation physics or with observed datasets
(e.g., galaxies at other redshifts) are needed before we can conclude that this method is fully gener-
alizable.

In future work, we will account for observational effects like contaminating galaxies in projection,
missing data, and photometric redshift uncertainties, as well as broader concerns about domain shift
in ML (see e.g. [7]). Aside from additional validation on other cosmological simulations [33], we
will test on observational data using published Mhalo estimates for well-known galaxy clusters (e.g.,
[20, 38]). With upcoming telescopes like the Roman Space Telescope [34] and Rubin Observatory
[9], we will be able to study GNN applications to large galaxy cluster samples in the wide-field
domain.
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[8] Douglas Clowe, Maruša Bradač, Anthony H. Gonzalez, Maxim Markevitch, Scott W. Randall,
Christine Jones, and Dennis Zaritsky. A Direct Empirical Proof of the Existence of Dark
Matter. The Astrophysical Journal, 648(2):L109–L113, September 2006.

[9] LSST Dark Energy Science Collaboration. Large Synoptic Survey Telescope: Dark Energy
Science Collaboration, November 2012.

[10] Miles Cranmer, Alvaro Sanchez-Gonzalez, Peter Battaglia, Rui Xu, Kyle Cranmer, David
Spergel, and Shirley Ho. Discovering Symbolic Models from Deep Learning with Inductive
Biases, 2020.

5



[11] Matthias Fey and Jan Eric Lenssen. Fast Graph Representation Learning with PyTorch Geo-
metric, 2019.

[12] Dan Hendrycks and Kevin Gimpel. Gaussian Error Linear Units (GELUs), 2016.

[13] Matthew Ho, John Soltis, Arya Farahi, Daisuke Nagai, August Evrard, and Michelle Ntam-
paka. Benchmarks and explanations for deep learning estimates of X-ray galaxy cluster masses.
Monthly Notices of the Royal Astronomical Society, 524(3):3289–3302, September 2023.

[14] Tin Kam Ho. Random decision forests. In Proceedings of 3rd International Conference on
Document Analysis and Recognition, volume 1, pages 278–282 vol.1, August 1995.

[15] Niall Jeffrey and Benjamin D. Wandelt. Solving high-dimensional parameter inference:
Marginal posterior densities &amp; Moment Networks, 2020.

[16] Harshil M. Kamdar, Matthew J. Turk, and Robert J. Brunner. Machine learning and cosmo-
logical simulations – I. Semi-analytical models. Monthly Notices of the Royal Astronomical
Society, 455(1):642–658, January 2016.

[17] Wouter M. Kouw and Marco Loog. An introduction to domain adaptation and transfer learning,
January 2019.

[18] Austin J. Larson, John F. Wu, and Craig Jones. Predicting dark matter halo masses from
simulated galaxy images and environments, July 2024.

[19] Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019.

[20] J. M. Lotz, A. Koekemoer, D. Coe, N. Grogin, P. Capak, J. Mack, J. Anderson, R. Avila,
E. A. Barker, D. Borncamp, G. Brammer, M. Durbin, H. Gunning, B. Hilbert, H. Jenkner,
H. Khandrika, Z. Levay, R. A. Lucas, J. MacKenty, S. Ogaz, B. Porterfield, N. Reid, M. Rob-
berto, P. Royle, L. J. Smith, L. J. Storrie-Lombardi, B. Sunnquist, J. Surace, D. C. Taylor,
R. Williams, J. Bullock, M. Dickinson, S. Finkelstein, P. Natarajan, J. Richard, B. Robertson,
J. Tumlinson, A. Zitrin, K. Flanagan, K. Sembach, B. T. Soifer, and M. Mountain. The Frontier
Fields: Survey Design and Initial Results. The Astrophysical Journal, 837(1):97, March 2017.

[21] Christopher C. Lovell, Stephen M. Wilkins, Peter A. Thomas, Matthieu Schaller, Carlton M.
Baugh, Giulio Fabbian, and Yannick Bahé. A machine learning approach to mapping baryons
on to dark matter haloes using the EAGLE and C-EAGLE simulations. Monnthly Notices of
the Royal Astronomical Society, 509(4):5046–5061, February 2022.

[22] Tobias A. Marriage, Viviana Acquaviva, Peter A. R. Ade, Paula Aguirre, Mandana Amiri,
John William Appel, L. Felipe Barrientos, Elia S. Battistelli, J. Richard Bond, Ben Brown,
Bryce Burger, Jay Chervenak, Sudeep Das, Mark J. Devlin, Simon R. Dicker, W. Bertrand
Doriese, Joanna Dunkley, Rolando Dünner, Thomas Essinger-Hileman, Ryan P. Fisher,
Joseph W. Fowler, Amir Hajian, Mark Halpern, Matthew Hasselfield, Carlos Hernández-
Monteagudo, Gene C. Hilton, Matt Hilton, Adam D. Hincks, Renée Hlozek, Kevin M. Huffen-
berger, David Handel Hughes, John P. Hughes, Leopoldo Infante, Kent D. Irwin, Jean Baptiste
Juin, Madhuri Kaul, Jeff Klein, Arthur Kosowsky, Judy M. Lau, Michele Limon, Yen-Ting
Lin, Robert H. Lupton, Danica Marsden, Krista Martocci, Phil Mauskopf, Felipe Menanteau,
Kavilan Moodley, Harvey Moseley, Calvin B. Netterfield, Michael D. Niemack, Michael R.
Nolta, Lyman A. Page, Lucas Parker, Bruce Partridge, Hernan Quintana, Erik D. Reese, Beth
Reid, Neelima Sehgal, Blake D. Sherwin, Jon Sievers, David N. Spergel, Suzanne T. Staggs,
Daniel S. Swetz, Eric R. Switzer, Robert Thornton, Hy Trac, Carole Tucker, Ryan Warne,
Grant Wilson, Ed Wollack, and Yue Zhao. The Atacama Cosmology Telescope: Sunyaev-
Zel’dovich-Selected Galaxy Clusters at 148 GHz in the 2008 Survey. The Astrophysical Jour-
nal, 737(2):61, August 2011.

[23] Benjamin P Moster, Thorsten Naab, Magnus Lindström, and Joseph A O’Leary. GalaxyNet:
Connecting galaxies and dark matter haloes with deep neural networks and reinforcement learn-
ing in large volumes. Monthly Notices of the Royal Astronomical Society, 507(2):2115–2136,
October 2021.

[24] Dylan Nelson, Annalisa Pillepich, Mohammadreza Ayromlou, Wonki Lee, Katrin Lehle, Eric
Rohr, and Nhut Truong. Introducing the TNG-Cluster simulation: Overview and the physical
properties of the gaseous intracluster medium. Astronomy & Astrophysics, 686:A157, June
2024.

6



[25] Dylan Nelson, Volker Springel, Annalisa Pillepich, Vicente Rodriguez-Gomez, Paul Torrey,
Shy Genel, Mark Vogelsberger, Ruediger Pakmor, Federico Marinacci, Rainer Weinberger,
Luke Kelley, Mark Lovell, Benedikt Diemer, and Lars Hernquist. The IllustrisTNG simula-
tions: Public data release. Computational Astrophysics and Cosmology, 6(1):2, May 2019.

[26] M. Ntampaka, J. ZuHone, D. Eisenstein, D. Nagai, A. Vikhlinin, L. Hernquist, F. Marinacci,
D. Nelson, R. Pakmor, A. Pillepich, P. Torrey, and M. Vogelsberger. A Deep Learning Ap-
proach to Galaxy Cluster X-Ray Masses. The Astrophysical Journal, 876(1):82, May 2019.

[27] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vincent Dubourg, Jake Vander-
plas, Alexandre Passos, David Cournapeau, Matthieu Brucher, Matthieu Perrot, and Édouard
Duchesnay. Scikit-learn: Machine Learning in Python. Journal of Machine Learning Research,
12(85):2825–2830, 2011.

[28] P. J. E. Peebles. Tests of cosmological models constrained by inflation. The Astrophysical
Journal, 284:439, September 1984.

[29] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Bac-
cigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, N. Bartolo, E. Battaner, R. Battye,
K. Benabed, A. Benoît, A. Benoit-Lévy, J.-P. Bernard, M. Bersanelli, P. Bielewicz, J. J. Bock,
A. Bonaldi, L. Bonavera, J. R. Bond, J. Borrill, F. R. Bouchet, F. Boulanger, M. Bucher, C. Buri-
gana, R. C. Butler, E. Calabrese, J.-F. Cardoso, A. Catalano, A. Challinor, A. Chamballu, R.-R.
Chary, H. C. Chiang, J. Chluba, P. R. Christensen, S. Church, D. L. Clements, S. Colombi,
L. P. L. Colombo, C. Combet, A. Coulais, B. P. Crill, A. Curto, F. Cuttaia, L. Danese, R. D.
Davies, R. J. Davis, P. De Bernardis, A. De Rosa, G. De Zotti, J. Delabrouille, F.-X. Désert,
E. Di Valentino, C. Dickinson, J. M. Diego, K. Dolag, H. Dole, S. Donzelli, O. Doré, M. Dous-
pis, A. Ducout, J. Dunkley, X. Dupac, G. Efstathiou, F. Elsner, T. A. Enßlin, H. K. Erik-
sen, M. Farhang, J. Fergusson, F. Finelli, O. Forni, M. Frailis, A. A. Fraisse, E. Franceschi,
A. Frejsel, S. Galeotta, S. Galli, K. Ganga, C. Gauthier, M. Gerbino, T. Ghosh, M. Giard,
Y. Giraud-Héraud, E. Giusarma, E. Gjerløw, J. González-Nuevo, K. M. Górski, S. Gratton,
A. Gregorio, A. Gruppuso, J. E. Gudmundsson, J. Hamann, F. K. Hansen, D. Hanson, D. L.
Harrison, G. Helou, S. Henrot-Versillé, C. Hernández-Monteagudo, D. Herranz, S. R. Hilde-
brandt, E. Hivon, M. Hobson, W. A. Holmes, A. Hornstrup, W. Hovest, Z. Huang, K. M. Huf-
fenberger, G. Hurier, A. H. Jaffe, T. R. Jaffe, W. C. Jones, M. Juvela, E. Keihänen, R. Keskitalo,
T. S. Kisner, R. Kneissl, J. Knoche, L. Knox, M. Kunz, H. Kurki-Suonio, G. Lagache, A. Läh-
teenmäki, J.-M. Lamarre, A. Lasenby, M. Lattanzi, C. R. Lawrence, J. P. Leahy, R. Leonardi,
J. Lesgourgues, F. Levrier, A. Lewis, M. Liguori, P. B. Lilje, M. Linden-Vørnle, M. López-
Caniego, P. M. Lubin, J. F. Macías-Pérez, G. Maggio, D. Maino, N. Mandolesi, A. Mangilli,
A. Marchini, M. Maris, P. G. Martin, M. Martinelli, E. Martínez-González, S. Masi, S. Matar-
rese, P. McGehee, P. R. Meinhold, A. Melchiorri, J.-B. Melin, L. Mendes, A. Mennella,
M. Migliaccio, M. Millea, S. Mitra, M.-A. Miville-Deschênes, A. Moneti, L. Montier, G. Mor-
gante, D. Mortlock, A. Moss, D. Munshi, J. A. Murphy, P. Naselsky, F. Nati, P. Natoli, C. B.
Netterfield, H. U. Nørgaard-Nielsen, F. Noviello, D. Novikov, I. Novikov, C. A. Oxborrow,
F. Paci, L. Pagano, F. Pajot, R. Paladini, D. Paoletti, B. Partridge, F. Pasian, G. Patanchon, T. J.
Pearson, O. Perdereau, L. Perotto, F. Perrotta, V. Pettorino, F. Piacentini, M. Piat, E. Pier-
paoli, D. Pietrobon, S. Plaszczynski, E. Pointecouteau, G. Polenta, L. Popa, G. W. Pratt,
G. Prézeau, S. Prunet, J.-L. Puget, J. P. Rachen, W. T. Reach, R. Rebolo, M. Reinecke, M. Re-
mazeilles, C. Renault, A. Renzi, I. Ristorcelli, G. Rocha, C. Rosset, M. Rossetti, G. Roudier,
B. Rouillé d’Orfeuil, M. Rowan-Robinson, J. A. Rubiño-Martín, B. Rusholme, N. Said, V. Sal-
vatelli, L. Salvati, M. Sandri, D. Santos, M. Savelainen, G. Savini, D. Scott, M. D. Seiffert,
P. Serra, E. P. S. Shellard, L. D. Spencer, M. Spinelli, V. Stolyarov, R. Stompor, R. Sudiwala,
R. Sunyaev, D. Sutton, A.-S. Suur-Uski, J.-F. Sygnet, J. A. Tauber, L. Terenzi, L. Toffolatti,
M. Tomasi, M. Tristram, T. Trombetti, M. Tucci, J. Tuovinen, M. Türler, G. Umana, L. Valen-
ziano, J. Valiviita, F. Van Tent, P. Vielva, F. Villa, L. A. Wade, B. D. Wandelt, I. K. Wehus,
M. White, S. D. M. White, A. Wilkinson, D. Yvon, A. Zacchei, and A. Zonca. Planck 2015
results: XIII. Cosmological parameters. Astronomy & Astrophysics, 594:A13, October 2016.

[30] E. S. Rykoff, E. Rozo, M. T. Busha, C. E. Cunha, A. Finoguenov, A. Evrard, J. Hao, B. P.
Koester, A. Leauthaud, B. Nord, M. Pierre, R. Reddick, T. Sadibekova, E. S. Sheldon, and
R. H. Wechsler. redMaPPer. I. Algorithm and SDSS DR8 Catalog. The Astrophysical Journal,
785(2):104, April 2014.

7



[31] H. Sampaio-Santos, Y. Zhang, R. L. C. Ogando, T. Shin, Jesse B. Golden-Marx, B. Yanny,
K. Herner, M. Hilton, A. Choi, M. Gatti, D. Gruen, B. Hoyle, M. M. Rau, J. De Vicente,
J. Zuntz, T. M. C. Abbott, M. Aguena, S. Allam, J. Annis, S. Avila, E. Bertin, D. Brooks,
D. L. Burke, M. Carrasco Kind, J. Carretero, C. Chang, M. Costanzi, L. N. da Costa, H. T.
Diehl, P. Doel, S. Everett, A. E. Evrard, B. Flaugher, P. Fosalba, J. Frieman, J. García-Bellido,
E. Gaztanaga, D. W. Gerdes, R. A. Gruendl, J. Gschwend, G. Gutierrez, S. R. Hinton, D. L.
Hollowood, K. Honscheid, D. J. James, M. Jarvis, T. Jeltema, K. Kuehn, N. Kuropatkin, O. La-
hav, M. A. G. Maia, M. March, J. L. Marshall, R. Miquel, A. Palmese, F. Paz-Chinchón, A. A.
Plazas, E. Sanchez, B. Santiago, V. Scarpine, M. Schubnell, M. Smith, E. Suchyta, G. Tarle,
D. L. Tucker, T. N. Varga, and R. H. Wechsler. Is diffuse intracluster light a good tracer of
the galaxy cluster matter distribution? Monthly Notices of the Royal Astronomical Society,
501(1):1300–1315, February 2021.

[32] F. Scarselli, M. Gori, Ah Chung Tsoi, M. Hagenbuchner, and G. Monfardini. The Graph Neural
Network Model. IEEE Transactions on Neural Networks, 20(1):61–80, January 2009.

[33] Joop Schaye, Roi Kugel, Matthieu Schaller, John C. Helly, Joey Braspenning, Willem El-
bers, Ian G. McCarthy, Marcel P. van Daalen, Bert Vandenbroucke, Carlos S. Frenk, Juliana
Kwan, Jaime Salcido, Yannick M. Bahé, Josh Borrow, Evgenii Chaikin, Oliver Hahn, Filip
Huško, Adrian Jenkins, Cedric G. Lacey, and Folkert S. J. Nobels. The FLAMINGO project:
Cosmological hydrodynamical simulations for large-scale structure and galaxy cluster surveys.
Monthly Notices of the Royal Astronomical Society, 526(4):4978–5020, October 2023.

[34] D. Spergel, N. Gehrels, C. Baltay, D. Bennett, J. Breckinridge, M. Donahue, A. Dressler, B. S.
Gaudi, T. Greene, O. Guyon, C. Hirata, J. Kalirai, N. J. Kasdin, B. Macintosh, W. Moos, S. Perl-
mutter, M. Postman, B. Rauscher, J. Rhodes, Y. Wang, D. Weinberg, D. Benford, M. Hudson,
W. S. Jeong, Y. Mellier, W. Traub, T. Yamada, P. Capak, J. Colbert, D. Masters, M. Penny,
D. Savransky, D. Stern, N. Zimmerman, R. Barry, L. Bartusek, K. Carpenter, E. Cheng, D. Con-
tent, F. Dekens, R. Demers, K. Grady, C. Jackson, G. Kuan, J. Kruk, M. Melton, B. Nemati,
B. Parvin, I. Poberezhskiy, C. Peddie, J. Ruffa, J. K. Wallace, A. Whipple, E. Wollack, and
F. Zhao. Wide-field infrarred survey telescope-astrophysics focused telescope assets wfirst-
afta 2015 report, 2015.

[35] Volker Springel, Simon D. M. White, Giuseppe Tormen, and Guinevere Kauffmann. Popu-
lating a cluster of galaxies - I. Results at \fontshape{it}{z}=0. Monthly Notices of the Royal
Astronomical Society, 328(3):726–750, December 2001.

[36] Baochen Sun, Jiashi Feng, and Kate Saenko. Return of frustratingly easy domain adaptation.
In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAI’16, pages
2058–2065, Phoenix, Arizona, February 2016. AAAI Press.

[37] S. Vegetti, S. Birrer, G. Despali, C. D. Fassnacht, D. Gilman, Y. Hezaveh, L. Perreault Lev-
asseur, J. P. McKean, D. M. Powell, C. M. O’Riordan, and G. Vernardos. Strong Gravitational
Lensing as a Probe of Dark Matter. Space Science Reviews, 220(5):58, July 2024.

[38] John R. Weaver, Sam E. Cutler, Richard Pan, Katherine E. Whitaker, Ivo Labbé, Sedona H.
Price, Rachel Bezanson, Gabriel Brammer, Danilo Marchesini, Joel Leja, Bingjie Wang,
Lukas J. Furtak, Adi Zitrin, Hakim Atek, Iryna Chemerynska, Dan Coe, Pratika Dayal, Pieter
van Dokkum, Robert Feldmann, Natascha M. Förster Schreiber, Marijn Franx, Seiji Fujimoto,
Yoshinobu Fudamoto, Karl Glazebrook, Anna de Graaff, Jenny E. Greene, Stéphanie Juneau,
Susan Kassin, Mariska Kriek, Gourav Khullar, Michael V. Maseda, Lamiya A. Mowla, Adam
Muzzin, Themiya Nanayakkara, Erica J. Nelson, Pascal A. Oesch, Camilla Pacifici, Casey Pa-
povich, David J. Setton, Alice E. Shapley, Heath V. Shipley, Renske Smit, Mauro Stefanon,
Edward N. Taylor, Andrea Weibel, and Christina C. Williams. The UNCOVER Survey: A
First-look HST + JWST Catalog of 60,000 Galaxies near A2744 and beyond. The Astrophysi-
cal Journal Supplement Series, 270:7, January 2024.

[39] Risa H. Wechsler and Jeremy L. Tinker. The Connection Between Galaxies and Their Dark
Matter Halos. Annual Review of Astronomy and Astrophysics, 56(1):435–487, September 2018.

[40] John F. Wu and Christian Kragh Jespersen. Learning the galaxy-environment connection with
graph neural networks, June 2023.

[41] John F. Wu, Christian Kragh Jespersen, and Risa H. Wechsler. How the Galaxy-Halo Connec-
tion Depends on Large-Scale Environment, February 2024.

8



[42] Z Yan, A J Mead, L Van Waerbeke, G Hinshaw, and I G McCarthy. Galaxy cluster mass
estimation with deep learning and hydrodynamical simulations. Monthly Notices of the Royal
Astronomical Society, 499(3):3445–3458, November 2020.

9



Figure 4: Spatial distribution of halos within the TNG-Cluster simulation. The middle panel shows
the full simulation, and the left and right panels highlight two example galaxy clusters. The bound-
aries of these clusters are marked as blue and red boxes in the middle panel.

Table 2: Summary of cuts applied to the TNG-Cluster data. Here, N∗ refers to number of stellar
particles, M⊙ refers to solar mass, R200 refers to the virial radius of the halo.
Sample Number of Subhalos

Full TNG-Cluster catalog 10,378,451
— within mass cuts - N∗ > 50; log(M∗/M⊙) > 9.5; log(Mhalo/M⊙) > 10.5 154,120
— within < 10× R200 of the cluster halo 127,165

Selection Criteria - log(Mhalo/M⊙) > 11; within 10 Mpc of the cluster halo
TNG-Cluster cross-validation 60,756
TNG300 Test Set 34,689

A TNG-Cluster Additional Details

Galaxies in the TNG-Cluster training data are shown in Figure 4. To mimic astronomical obser-
vations of galaxies, we project the galaxy clusters along the z axis, which is chosen to be the line
of sight. This procedure bridges the gap between simulation data and spectroscopic observations,
which typically capture two spatial dimensions (x, y) and line-of-sight velocities (vz). We also ap-
ply quality cuts to the simulation in Table 2 to ensure a complete sample of massive, well-resolved
galaxies.

We split the TNG-Cluster data into training and validation sets by implementing a k-fold cross-
validation strategy based on cluster IDs rather than traditional random splits. This method isolates
subhalos according to their cluster IDs while ensuring that all subhalos from a single cluster remain
within the same fold. One potential caveat of this method is that we do not include the contaminating
structure along the line-of-sight from other clusters which might be in a different k-fold.
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