
DeepUQ: Assessing the Aleatoric Uncertainties from
two Deep Learning Methods

Rebecca Nevin1

rnevin@fnal.gov
Aleksandra Ćiprijanović1,2

aleksand@fnal.gov

Brian D. Nord1,2,3

nord@fnal.gov

1Fermi National Accelerator Laboratory, Batavia, IL 60510
2Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637

3Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637

Abstract

Assessing the quality of aleatoric uncertainty estimates from uncertainty quan-
tification (UQ) deep learning methods is important in scientific contexts, where
uncertainty is physically meaningful and important to characterize and interpret
exactly. We systematically compare aleatoric uncertainty measured by two UQ
techniques, Deep Ensembles (DE) and Deep Evidential Regression (DER). Our
method focuses on both zero-dimensional (0D) and two-dimensional (2D) data,
to explore how the UQ methods function for different data dimensionalities. We
investigate uncertainty injected on the input and output variables and include a
method to propagate uncertainty in the case of input uncertainty so that we can
compare the predicted aleatoric uncertainty to the known values. We experiment
with three levels of noise. The aleatoric uncertainty predicted across all models
and experiments scales with the injected noise level. However, the predicted un-
certainty is miscalibrated to std(σal) with the true uncertainty for half of the DE
experiments and almost all of the DER experiments. The predicted uncertainty is
the least accurate for both UQ methods for the 2D input uncertainty experiment and
the high-noise level. While these results do not apply to more complex data, they
highlight that further research on post-facto calibration for these methods would be
beneficial, particularly for high-noise and high-dimensional settings.

1 Introduction

Physically and statistically interpretable uncertainties are critical for applications in science and
industry. Uncertainty quantification (UQ) in deep neural networks has gained significant attention,
with recent work exploring taxonomies of uncertainties, including domain, epistemic, and aleatoric
uncertainties, e.g., [4, 5, 10]. Aleatoric uncertainty, σal, is significant because, unlike epistemic
uncertainty, it is not a result of model limitations but rather an inherent property of the data. In
many cases, aleatoric uncertainty is exactly known because it is produced by a well-understood
physical process, allowing us to anticipate not only its expected amplitude but also its distributional
characteristics. For instance, in astrophysics, the Poisson distribution1 characterizes ‘shot’ or photon
noise, while the Normal distribution characterizes read and other forms of thermal or electronic
noise. Developing a coherent framework for benchmarking aleatoric uncertainty estimates from deep

1The Poisson distribution can be approximated by a Gaussian when the photon rate λ is large.

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.

rnevin@fnal.gov
aleksand@fnal.gov
nord@fnal.gov

networks and assessing their calibration is needed to ensure that the predicted aleatoric uncertainty
aligns with our scientific expectations.

UQ methods broadly fall under the categories of Bayesian methods (e.g., Bayesian Neural Networks
(BNNs) [15, 24, 19]), Bayesian model averaging (e.g., Deep Ensembles [14], MC Dropout [9]),
and Evidential Deep Learning [26] (e.g., Deep Evidential Regression [1, 16]). In addition, a class
of methods for uncertainty calibration [18] exist separately in the statistical literature and have
recently gained popularity as post-processing tools (e.g., conformal prediction [2]). Other work has
explored formalized comparison of UQ methods (e.g., [6, 21, 3, 25, 7]). [21, 25] compare aspects of
predictive uncertainty distributions, and [7] present an uncertainty toolbox for comparing predictive
uncertainties; all of these methods do so without access to true uncertainty values. Of the few studies
testing the exact calibration of predicted uncertainties [6, 3], some do not vary data dimensionalities
or uncertainty injection types [6], while others vary these factors but do not report mean aleatoric
uncertainty or propagate input uncertainty, preventing direct comparison to expected values [3].

Quantifying how noise on the input variable affects the predictions of aleatoric uncertainty on the
output variable from deep learning methods is of critical importance, especially in computer vision,
and has not yet received much attention in the literature (e.g., [20, 29]). The bulk of previous work on
aleatoric uncertainty has focused mostly on assessing the predicted aleatoric uncertainty on the output
variable y via injecting uncertainty directly on y (for a review, see [11]). Recently, the statistical
field of input uncertainty has intersected with the deep learning literature under the umbrella of
UQ (for a review, see [27]). Experiments have focused on propagating input uncertainty through a
neural network for regression using a Laplace Approximation [29] as well as through a Taylor series
expansion and Monte Carlo sampling approach with a multi-layer perception [27]. Assessing input
uncertainty is inherently more complex, requiring tractable functional relationships between input
and output variables when propagating the uncertainty onto the output variables.

We present a study of regression on tabular (0D) and imaging (2D) data that investigates aleatoric
uncertainty for cases where uncertainty is injected on either the input x or the output y variables,
providing a more comprehensive understanding of aleatoric uncertainty in regression tasks. By
injecting uncertainty onto the input variable and propagating it to the output variable, we can assess
the exact calibration of the predicted uncertainty estimate. We design a set of desiderata for how
the predicted aleatoric uncertainty should behave: i) the predicted uncertainty should scale with the
injected uncertainty; ii) the aleatoric uncertainty should be well-calibrated (within std(σal) of the
true uncertainty value); and iii) these desiderata should hold for both data dimensionalities and both
uncertainty injection types (input and output). We do this all for a very simple set of experiments; we
caution the reader against applying the conclusions here to all types of data, including real-world
datasets.

2 Deep Learning Methods for Predicting Uncertainty

Deep Ensemble: Ensembling mean-variance estimation networks (MVEs) produces a set of
predicted mean and variance values – ‘Deep Ensembles’ [DE; 14]. We build upon the DE
framework from [14] incorporating several modifications inspired by previous work, including
a softplus activation for the σ2 output neuron to enforce a positive output value and a β mod-
ification to the loss function, as introduced in [22]. The modified loss function we use is:
Lβ−NLL = 1

N

∑N
i=0

[
σ2β(xi)

[
1
2 log σ2(xi) +

(yi−µ(xi))
2

2σ2(xi)
+C

]]
. The β-modified loss function

helps ensure convergence of the network predictions, avoiding a commonly observed problem in
MVEs, where the variance artificially enlarges resulting in a poor estimate of the mean. We use a
β value of 0.5, which is recommended by [22], and described in more depth in Appendix D. The
aleatoric uncertainty is the mean of the predicted standard deviations for the ensemble of K = 10

models: σal =
√

1
K

∑K
k=1 σ

2
k, where σ2

k is the variance predicted by the k-th network.

Deep Evidential Regression: Deep Evidential Regression (DER) estimates aleatoric uncertainties
via evidential distributions that are directly incorporated into the loss function [1]. Instead of requiring
an ensemble of networks, it places evidential priors over a Gaussian likelihood function, and the
network is trained to learn the hyperparameters of the evidential distribution.

We use the normal-inverse-gamma (NIG) loss from [16], which includes an additional term weighted
by the width of the t−distribution. This formulation improves the efficiency and accuracy of training:

2

Figure 1: Data examples for the four experimental designs: a) output uncertainty for the 0D linear
regression, b) input uncertainty for 0D, c) output uncertainty for the 2D imaging data, and d) input
uncertainty for the 2D data. The noise level is high for all panels: σy = 0.1. For the case of the input
uncertainty panels (b and d), the uncertainty is injected on the input variable, σx, and uncertainty
propagation results in a σy value of 0.1.

LNIG = 1
N

∑N
i=1

[
−log LNIG

i + λ|yi−γ
wSt

|Φ
]
, where λ is a tunable regularization hyperparameter

(we use λ = 0.01 as in [16]), wSt is the width of the t−distribution, and Φ is the total evidence
Φ = 2ν + α. For a full derivation, see [16], which we also summarize in Appendix E.

We use the modified definitions of aleatoric uncertainty from [16]. The aleatoric uncertainty is the

width of the t−distribution, which resembles a normal distribution: σal ≡ wSt =
√

β(1+ν)
αν .

Experimental Design: Figure 1 illustrates the experimental setup for an example of high-noise data.

The 0D data are from a simple linear regression model: y = mx. The values of x are linearly
spaced between 0 and 10. The data are designed so that the y distribution is uniform, U [0, 2]. The
training/validation/test set size is 90k/10k/10k. To create data for the output uncertainty experiments,
we inject noise directly on the prediction or label, such that ynoisy = y + N (0, σ2

y). The models
are trained on (x, ynoisy) pairs. In the input uncertainty experiments, we inject noise via the input
variable xnoisy = x+N (0, σ2

x) and the models are trained on (xnoisy, y) pairs.

For the 2D data, we use the software package DeepBench ([28] in prep) to generate 32× 32-pixel
galaxy images by varying the Sérsic radius, amplitude, and position angle within ranges [0, 0.01],
[1, 10], and [−1.5, 1.5], respectively. We are motivated by real-world uncertainty examples in
astronomical imaging to generate a 2D dataset in addition to the 0D tabular dataset. The output
variable y is the sum of the pixel values. The dataset is designed to be uniform in y over a range [0, 2]
for a training/validation/test set size of 4500/500/500. For the output uncertainty experiments, we
inject a random normal distribution with mean zero and standard deviation σy directly on y. For the
input uncertainty experiments, we inject a random normal distribution with mean zero and standard
deviation σx on each pixel, which results in a normal distribution in σy after propagation. We use a
random normal distribution because the DE and the DER methods assume that the output variable is
distributed as a random normal distribution.

We distinguish between the predicted aleatoric uncertainty from the methods, σal, which is measured
as an uncertainty on the output variable, and the true uncertainty on the output variable, σy. The
true uncertainty on the output variable is either directly known in the case of the output uncertainty
experiments or is known through uncertainty propagation for the input uncertainty experiments. The
true output uncertainty has low, medium, and high values: σy ∈ [0.01, 0.05, 0.1]. These noise levels
are chosen such that the high noise value datasets have an uncertainty level that is on average 10%
of the output variable y. For input uncertainty, we inject noise σx and calculate the expected σy

uncertainty value via standard rules of error propagation described in Appendix C. The relationship
between σy and σx for the 0D data is σy = |m|σx, where m is the slope of the line, and the
relationship for the 2D data is σy = 32σx.

UQ Model Architectures: We use the DeepUQ package to define the model architecture and perform
our experiments. We also present the DeepUQ-neurIPS-WS-2024 repository as an accompaniment
to the paper, with notebook examples of how to reproduce the exact models, figures, and tables in
this paper. Both UQ methods use the same fully connected layer network architecture, which is two
hidden layers of 64 neurons each. The hidden layer neurons utilize a ReLu activation function. For
the 0D experiments, the networks use two input neurons (the m value and the x value for a single
point), while the 2D experiments use the 32× 32 pixel input. We use five convolutional layers for the

3

https://github.com/deepskies/DeepBench
https://pypi.org/project/deepuq/
https://github.com/deepskies/DeepUQ-neurIPS-WS-2024

Figure 2: Distribution of predicted σal values. The circular point for each distribution is the sample
mean and the black error bars show the std(σal) confidence range, the standard deviation of the σal

distribution. The vertical dashed lines demonstrate the true output uncertainty values, σy, which
vary by noise level. The light pink, medium pink, and purple distributions correspond to the low-,
medium-, and high-noise models.

2D networks before the fully connected layers: the architecture is a series of convolutional filters that
increase in depth and decrease in size further into the neural network. These layers are interspersed
with 2D pooling. For all models, we use the Adam optimizer with an initial learning rate of 0.001.

For the DE method, two output neurons correspond to µ and σ2, such that y ∼ N (µ, σ2). For the
DER method, four output neurons correspond to the parameters γ, ν, α, and β. The output neurons
utilize a softplus activation if a positive value is required (i.e., for σ2 for the DE, and for ν, α, and β
for the DER) and a linear activation for all other outputs (i.e., for µ for the DE, and γ for the DER).
For more details of the software package DeepUQ, see Appendix F.

3 Results

We run both UQ methods for all four experimental setups and all three noise levels and find that all
models converge, with final mean-square error (MSE) values at epoch 99 ranging from 0.0001 to
0.01 (Appendix G). Furthermore, the DE and DER methods have comparable final MSE values for
each noise level, and the NIG loss and β−NLL loss values are similar for each UQ method across
experiments for a fixed noise level. This indicates that the different methods of uncertainty injection
and the different data dimensionalities are all equally adequately learning to predict the relationship
between input and output values. To test desideratum (i), we display the distribution of predicted
aleatoric uncertainties for the test set for the different noise levels in Figure 2. We use the standard
deviation of the predicted uncertainty values, std(σal), to assess desiderata (ii) and (iii): whether the
predicted uncertainty value σal is consistent with the true value σy for all four experiments and all
three noise levels.

4 Discussion

The predicted aleatoric uncertainty increases proportionately with the true injected uncertainty. The
models are sensitive to the true uncertainty, which bolsters confidence in these UQ methods. It
further confirms the findings of [8], where the automated Deep Ensemble method (AutoDEUQ)
produces predicted aleatoric uncertainty that scales with uncertainty injected on the output variable.
Additionally, [3] find that the predicted aleatoric uncertainty from DER models increases for 0D and
2D experiments where uncertainty is increased on both the input and output variables.

When we require that the predicted uncertainty falls within std(σal) of the true uncertainty to be
considered ‘well calibrated’, we find that only seven of the twelve DE experiments and two of the
twelve of the DER experiments satisfy this requirement. Furthermore, for both methods, the degree
of miscalibration depends on the experiment’s dimensionality and the type of uncertainty injection.
Desiderata (ii) and (iii) are therefore violated for both experiments.

For the DE method, the 0D experiments are calibrated for the medium- and high-noise models (Figure
2, left). Both of the 0D low-noise experiments slightly overestimate the uncertainty. Overall, the
uncertainty estimates are the least calibrated for the most complex experimental setup (input, 2D;
bottom row). For the DER method (Figure 2, right), the majority of experiments across all noise
levels produce miscalibrated uncertainty estimates, over-estimating (low-noise) and under-estimating
(medium- and high-noise) the predictive uncertainty. The exceptions are the 0D output low-noise
model and the 2D output medium-noise model, which are calibrated. For both methods, the most

4

inaccurate experiment is the 2D input uncertainty experiment. Within this experiment, the high-noise
models are the least calibrated.

In [3], the authors perform regression experiments for a DER model; the network is well calibrated
for the 0D dataset but underestimates the true uncertainty for the 2D dataset injected with output
uncertainty. They suggest a recalibration step in more complex domains (i.e., 2D data) to ameliorate
this concern, where recalibration involves training an auxiliary isotonic regression model so that the
predicted uncertainties are calibrated to the cumulative density function of the data. We expand upon
the work of [3] to also include uncertainty injected on the input variable. For both types of uncertainty
injection, we identify a miscalibration in aleatoric uncertainty for the DER models and identify
that the effect is worse for high-dimensionality and high-noise experiments where the uncertainty
injection is on the input variable.

5 Conclusions and Outlook

We explore aleatoric uncertainties predicted by two deep learning UQ approaches — Deep Ensembles
(DE) and Deep Evidential Regression (DER). We compare the aleatoric uncertainty predictions of
these two methods to the true uncertainty for four different experiments and three noise levels. Both
methods meet desideratum (i): the aleatoric uncertainties scale with the injected uncertainty.

However, for our experiments, the methods both fail to meet desiderata (ii) and (iii), that the predicted
aleatoric uncertainties be well-calibrated, i.e., consistent to std(σal) with the true uncertainties, and
that they meet this requirement across all experiments. Notably, most DER experiments underestimate
the uncertainty for medium- and high-noise models and overestimate the uncertainty for low-noise
models. The DE experiments deviate mostly for the more complex 2D input uncertainty experiments.
The predicted uncertainties are the least accurate for both methods for the 2D, input uncertainty,
and high-noise experiments. While these observations do not imply inherent deficiencies in DE and
DER, they highlight that further research would be beneficial to assess whether these methods require
post-facto calibration, particularly for high-noise and high-dimensional settings.

Some limitations of our work are: Our conclusions apply only to our toy datasets. We do not demon-
strate performance of these methods on real world datasets with higher complexity. Additionally, our
conclusions apply only to homoskedastic noise generated from a Gaussian distribution; expanding
this to non-Gaussian distributions and heteroskedastic noise is a direction for future work.

References
[1] Alexander Amini, Wilko Schwarting, Ava Soleimany, and Daniela Rus. Deep Evidential

Regression. arXiv e-prints, page arXiv:1910.02600, October 2019.

[2] Anastasios N. Angelopoulos and Stephen Bates. A Gentle Introduction to Conformal Prediction
and Distribution-Free Uncertainty Quantification. arXiv e-prints, page arXiv:2107.07511, July
2021.

[3] Lennart Bramlage, Michelle Karg, and Cristóbal Curio. Plausible uncertainties for human
pose regression. In EEE/CVF International Conference on Computer Vision (ICCV), pages
15087–15096, 10 2023.

[4] A. Brando. Aleatoric uncertainty modelling in regression problems using deep learning. PhD
thesis, Universitat de Barcelona, 2022.

[5] Axel Brando, Isabel Serra, Enrico Mezzetti, Francisco Javier Cazorla Almeida, and Jaume
Abella Ferrer. Standardizing the probabilistic sources of uncertainty for the sake of safety deep
learning. In Proceedings of the Workshop on Artificial Intelligence Safety 2023 (SafeAI 2023)
co-located with the Thirty-Seventh AAAI Conference on Artificial Intelligence (AAAI 2023):
Washington DC, USA, February 13-14, 2023., volume 3381. CEUR Workshop Proceedings,
2023.

[6] João Caldeira and Brian Nord. Deeply Uncertain: Comparing Methods of Uncertainty Quantifi-
cation in Deep Learning Algorithms. arXiv e-prints, page arXiv:2004.10710, April 2020.

5

[7] Youngseog Chung, Ian Char, Han Guo, Jeff Schneider, and Willie Neiswanger. Uncertainty
Toolbox: an Open-Source Library for Assessing, Visualizing, and Improving Uncertainty
Quantification. arXiv e-prints, page arXiv:2109.10254, September 2021.

[8] Romain Egele, Romit Maulik, Krishnan Raghavan, Bethany Lusch, Isabelle Guyon, and
Prasanna Balaprakash. AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification.
arXiv e-prints, page arXiv:2110.13511, October 2021.

[9] Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. arXiv e-prints, page arXiv:1506.02142, June 2015.

[10] Yarin Gal, Petros Koumoutsakos, François Lanusse, et al. Bayesian uncertainty quantification
for machine-learned models in physics. Nature Reviews Physics, 4:573–577, 2022.

[11] Eyke Hüllermeier and Willem Waegeman. Aleatoric and Epistemic Uncertainty in Machine
Learning: An Introduction to Concepts and Methods. arXiv e-prints, page arXiv:1910.09457,
October 2019.

[12] Alex Kendall and Yarin Gal. What Uncertainties Do We Need in Bayesian Deep Learning for
Computer Vision? arXiv e-prints, page arXiv:1703.04977, March 2017.

[13] Harry H. Ku. Notes on the use of propagation of error formulas. 2010.

[14] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and Scalable Pre-
dictive Uncertainty Estimation using Deep Ensembles. arXiv e-prints, page arXiv:1612.01474,
December 2016.

[15] Jouko Lampinen and Aki Vehtari. Bayesian techniques for neural networks — review and case
studies. In 2000 10th European Signal Processing Conference, pages 1–8, 2000.

[16] Nis Meinert, Jakob Gawlikowski, and Alexander Lavin. The Unreasonable Effectiveness of
Deep Evidential Regression. arXiv e-prints, page arXiv:2205.10060, May 2022.

[17] D.A. Nix and A.S. Weigend. Estimating the mean and variance of the target probability
distribution. In Proceedings of 1994 IEEE International Conference on Neural Networks
(ICNN’94), volume 1, pages 55–60 vol.1, 1994.

[18] Jeremy Nixon, Mike Dusenberry, Ghassen Jerfel, Timothy Nguyen, Jeremiah Liu, Linchuan
Zhang, and Dustin Tran. Measuring Calibration in Deep Learning. arXiv e-prints, page
arXiv:1904.01685, April 2019.

[19] Nicholas G. Polson and Vadim Sokolov. Deep Learning: A Bayesian Perspective. Bayesian
Analysis, 12(4):1275 – 1304, 2017.

[20] Natália V. N. Rodrigues, L. Raul Abramo, and Nina S. T. Hirata. The information of attribute
uncertainties: what convolutional neural networks can learn about errors in input data. Machine
Learning: Science and Technology, 4(4):045019, December 2023.

[21] Gabriele Scalia, Colin A. Grambow, Barbara Pernici, Yi-Pei Li, and William H. Green. Evaluat-
ing Scalable Uncertainty Estimation Methods for DNN-Based Molecular Property Prediction.
arXiv e-prints, page arXiv:1910.03127, October 2019.

[22] Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the Pitfalls of
Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks. arXiv e-prints,
page arXiv:2203.09168, March 2022.

[23] Maximilian Seitzer, Arash Tavakoli, Dimitrije Antic, and Georg Martius. On the Pitfalls of
Heteroscedastic Uncertainty Estimation with Probabilistic Neural Networks. arXiv e-prints,
page arXiv:2203.09168, March 2022.

[24] D. M. Titterington. Bayesian Methods for Neural Networks and Related Models. Statistical
Science, 19(1):128 – 139, 2004.

6

[25] Kevin Tran, Willie Neiswanger, Junwoong Yoon, Qingyang Zhang, Eric Xing, and Zachary W.
Ulissi. Methods for comparing uncertainty quantifications for material property predictions.
arXiv e-prints, page arXiv:1912.10066, December 2019.

[26] Dennis Ulmer, Christian Hardmeier, and Jes Frellsen. Prior and Posterior Networks: A
Survey on Evidential Deep Learning Methods For Uncertainty Estimation. arXiv e-prints, page
arXiv:2110.03051, October 2021.

[27] Matias Valdenegro-Toro, Ivo Pascal de Jong, and Marco Zullich. Unified Uncertainties: Com-
bining Input, Data and Model Uncertainty into a Single Formulation. arXiv e-prints, page
arXiv:2406.18787, June 2024.

[28] M. Voetberg, Ashia Livaudais, Becky Nevin, Omari Paul, and Brian Nord. Deepbench: A
simulation package for physical benchmarking data. Submitted to Journal of Open Source
Software, 2024. Manuscript submitted for publication.

[29] W. Wright, Guillaume Ramage, Dan Cornford, and Ian Nabney. Neural network modelling with
input uncertainty: Theory and application. VLSI Signal Processing, 26:169–188, 08 2000.

7

Acknowledgments and Disclosure of Funding

A Funding

We acknowledge the Deep Skies Lab as a community of multi-domain experts and collaborators
who’ve facilitated an environment of open discussion, idea generation, and collaboration. This
community was important for the development of this project.

Work supported by the Fermi National Accelerator Laboratory, managed and operated by
Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department
of Energy. The U.S. Government retains and the publisher, by accepting the article for publication,
acknowledges that the U.S. Government retains a non-exclusive, paid-up, irrevocable, world-wide
license to publish or reproduce the published form of this manuscript, or allow others to do so, for
U.S. Government purposes.

This material is based upon work supported by the Department of Energy under grant No
FNAL-LDRD- L2021-004.

B Author Contributions

Nevin: Conceptualization, Methodology, Formal analysis, Investigation, Writing - Original Draft,
Writing - Review & Editing

Ćiprijanović: Conceptualization, Methodology, Formal analysis, Writing - Review & Edit-
ing, Supervision, Project administration

Nord: Conceptualization, Methodology, Formal analysis, Resources, Writing - Original
Draft, Writing - Review & Editing, Supervision, Project administration, Funding acquisition

We thank the following colleagues for their insights and discussions during the development of this
work: Sreevani Jarugula.

8

C Uncertainty propagation

Here we describe our process for propagating uncertainty injected on the input variable σx onto
uncertainty on the output variable σy. For a generic function y = f(x1, x2, ...xN), where y is the
dependent variable and x1, x2, and so on are the independent variables, the standard deviation of y,
σy , can be written in terms of uncertainty on the x variables [13]:

σy =

√
(
∂f

∂x1
)
2

σ2
x1

+ (
∂f

∂x2
)
2

σ2
x2

+ 2(
∂f

∂x1
)(

∂f

∂x2
)σx1x2

, (1)

where the final covariance term (σx1x2
) can be dropped when the correlation between uncertainty

terms is negligible, as is the case for both of our data dimensionalities.

For the 0D linear regression case, y = mx, the partial derivative only exists relative to x, which has
associated uncertainty, so this equation reduces to:

σy = |m|σx. (2)

For the case of the 2D image noise injection, we inject a standard normal value for each pixel and
calculate the predicted value y as a sum of all pixel values. The partial derivative terms are all equal
to 1 because this is a summation. Since we inject the same value of σ for all pixels, the formula then
becomes:

σy =

√√√√ N∑
i=1

σ2
xi

= 32σx (3)

where i is the index of all (N) pixels, and the images are 32× 32 pixels.

D Deep Ensembles

A common approach for quantifying aleatoric uncertainty in regression tasks with deep neural
networks is to assume that the regression output y follows a distribution and to predict the parameters
of this distribution. One standard technique is to assume that the errors are heteroskedastic2 and
to model the distribution of y as a Gaussian parameterized by mean µ and variance σ2, where the
predicted values yi ∼ N (µ(xi), σ

2(xi)). The model is trained using maximum likelihood estimation
by minimizing the negative log likelihood loss under the training set distribution p(X,Y):

LNLL = −log p(Y |X)

=
1

N

N∑
i=0

[
1

2
log σ2(xi) +

(yi − µ(xi))
2

2σ2(xi)
+ C

]
,

(4)

where µ(xi) and σ2(xi) are the model outputs for each training data point using the model with the
optimal set of internal parameters. This technique is known as mean-variance estimation [MVE;
17, 12].

We use a modified loss function for training, known as the β-NLL loss. This loss is proposed by
[23] as a means for avoiding a commonly observed problem in MVEs, where the variance artificially
enlarges resulting in a poor estimate of the mean. The β parameter helps ensure convergence of the
network predictions for µ(xi) and σ2(xi):

Lβ−NLL =
1

N

N∑
i=0

[
σ2β(xi)

[
1

2
log σ2(xi) +

(yi − µ(xi))
2

2σ2(xi)
+ C

]]
, (5)

2The data we generate are homoskedastic, with a constant σ2 for each noise level, while the Gaussian
model in MVE is heteroskedastic, allowing the predicted σ2 value to vary across points. These experiments,
where we test MVE with homoskedastic data, do not break the model’s assumption. Instead, we ensure that
the model can still accurately predict constant uncertainty when the true distribution is homoskedastic. We are
particularly interested here in the calibration of the uncertainty predictions; assessing the model’s ability to
return a distribution of uncertainty values is a compelling topic for future research.

9

where the contribution of each data point is weighted by its β-exponentiated variance estimate. This
modified loss simplifies to the standard Gaussian negative log likelihood for β = 0 and the mean-
squared error (MSE) loss for β = 1. We experiment with several prescriptions for β including constant
values β = 0.0, 0.5, 1.0 and several situations where β changes throughout training, including a
linearly decreasing β value, 1 to 0 and two step functions, where β decreases from 1 to 0.5 and 1 to
0.0 at half the total number of epochs. We ultimately select a β value of 0.5, which is recommended
by [23].

E Deep Evidential Regression

Similar to MVE, we assume the training data are drawn from a Gaussian likelihood distribution
yi ∼ N (µ(xi), σ

2(xi)). We also place a Gaussian prior on the mean µ and an Inverse-Gamma prior
on the variance σ2:

µj ∼ N (γj , σ
2
j /νj),

σ2
j ∼ Γ−1(αj , βj),

(6)

where j is a sample drawn from these hyperprior distributions; Γ(·) is the gamma function; and
m = (γ, ν, α, β) are hyperparameters of these distributions, where γ ∈ R, ν > 0, α > 1, and β > 0.

One can then formulate the conjugate prior distribution as a Normal-Inverse-Gamma (NIG) distri-
bution; for a full derivation, see [1]. Drawing a sample from the NIG distribution yields a single
instance j of the likelihood function: the NIG hyperparameters m control the location and dispersion
(uncertainty) of the likelihood function N (µj , σ

2
j). We will later use the hyperparameters of this

higher-order evidential distribution to define the aleatoric uncertainty; these higher-order parameters
determine the lower-order likelihood distribution from which observations are drawn.

To fit the model, we define a marginal likelihood p(yi|m), which is done using Bayesian probability
theory in [1]: the conjugate prior defined above is combined with the Gaussian likelihood and
integrated over the parameters µ and σ2. An analytic solution to the marginal likelihood is the Student
t−distribution:

Li,NIG = St2α(yi|γ,
β(1 + ν)

να
), (7)

where St2α is a t−distribution with 2α degrees of freedom.

The negative log-likelihood loss of this distribution and the addition of an additional term weighted
by the width of the t−distribution provides the LNIG loss that we use for training: LNIG =
1
N

∑N
i=1

[
−log LNIG

i + λ|yi−γ
wSt

|Φ
]
.

F Software package DeepUQ

DeepUQ is a software package that provides modules, utilities, and scripts for setting the hyperparam-
eters and training both DE and DER models and analyzing the predicted aleatoric uncertainties. It is
also designed to be tunable to insert additional UQ methods and/or to create additional noise profiles
for uncertainty injection on the 0D or 2D data.

DeepUQ provides the following modules and scripts:

• data.py - A module for generating data with accompanying controllable injected aleatoric
uncertainty on either the input or output variables.

• model.py - A module that provides tunable loss functions, network architecture, and
hyperparameters for the DE and DER methods.

• train.py - A module for the training procedure for both models.

• DeepEnsemble.py and DeepEvidentialRegression.py - Scripts for generating data,
initializing the methods, and training the models.

10

https://pypi.org/project/deepuq/

The DeepUQ-neurIPS-WS-2024 repository provides additional details for how run the DeepUQ
scripts to exactly reproduce the results of the paper, including the models, figures, and tables.

G Model Loss

We report the values for the MSE metric and the NIG or β−NLL loss for the validation set for the
low- and high-noise models for the final epoch of training in Tables 1 and 2, respectively.

Metric 0D Data 2D Data
Output Injection Input Injection Output Injection Input Injection
DE DER DE DER DE DER DE DER

MSE Metric 0.0001 0.0001 0.0001 0.0001 0.0006 0.0002 0.0002 0.0001
Loss -0.0502 -3.0890 -0.0416 -2.9338 -0.0426 -2.7691 -0.0993 -3.0639

Table 1: Loss values for the final epoch of the low-noise experiments. We provide the mean-square
error (MSE) metric and β−NLL/NIG loss for DE/DER methods in 0D and 2D for uncertainty injected
on the output and input variables.

Metric 0D Data 2D Data
Output Injection Input Injection Output Injection Input Injection
DE DER DE DER DE DER DE DER

MSE Metric 0.0098 0.0097 0.0091 0.0092 0.0099 0.0086 0.0047 0.0042
Loss -0.1724 -0.8728 -0.1678 -0.9018 -0.1767 -0.9202 -0.1330 -1.3358

Table 2: Loss values for the final epoch of the high-noise experiments. We provide the mean-square
error (MSE) metric and β−NLL/NIG loss for DE/DER methods in 0D and 2D for uncertainty injected
on the output and input variables.

11

https://github.com/deepskies/DeepUQ-neurIPS-WS-2024

	Introduction
	Deep Learning Methods for Predicting Uncertainty
	Results
	Discussion
	Conclusions and Outlook
	Funding
	Author Contributions
	Uncertainty propagation
	Deep Ensembles
	Deep Evidential Regression
	Software package DeepUQ
	Model Loss

