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Abstract

Strong gravitational lensing has emerged as a powerful method for probing the
nature of dark matter via substructure within galaxies. However, the limited avail-
ability of high-quality, high-resolution lensing images poses significant challenges
to developing robust machine learning models, particularly for super-resolution
imaging tasks. In this work, we present a novel, physics-informed approach to
super-resolution of strong lensing images, designed specifically for sparse datasets.
Unlike traditional supervised methods, our approach is fully unsupervised, requir-
ing no ground-truth high-resolution images for training. By incorporating the
gravitational lens equation directly into the architecture, our model is capable of ex-
tracting key physical information about the lens system, such as the distribution of
dark matter in the lensing system, more efficiently in addition to enhancing image
resolution. We validate our approach on simulated lensing datasets, demonstrating
that our method not only improves image clarity but also provides meaningful
insights into dark matter substructure. This work paves the way for more efficient
analysis of upcoming large-scale surveys, including those from LSST and Euclid,
which will dramatically expand the available data for strong lensing studies.

1 Introduction

Strong gravitational lensing has proven to be one of the most valuable tools in modern astrophysics
for probing the distribution of dark matter (DM) [16, 4, 22, 21, 19, 11], particularly through the sub-
structure within dark matter halos [9, 6, 10, 5, 18, 13]. In particular, the distortion and magnification
of background galaxies provide unique insights into the gravitational potential of the intervening
lensing galaxy and its surrounding dark matter [1, 8, 23, 3, 14]. However, the extraction of meaningful
information from these images is often hindered by a number of challenges, including limited datasets
and the inherent complexity of modeling the lensing effect.
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Traditional approaches to studying strong lensing rely heavily on large, labeled datasets that require
ground-truth high-resolution (HR) images. However, due to the rarity of these cosmic alignments,
only a small number of strong lensing events have been observed, severely limiting the availability of
high-quality HR datasets. This scarcity poses significant challenges to training supervised machine
learning models, particularly in the context of super-resolution (SR) imaging, where reconstructing
fine details from low-resolution (LR) images is critical.

In response to these challenges, we propose a novel, physics-informed approach to super-resolution
imaging for strong gravitational lensing that leverages unsupervised learning methods. Our model
does not require HR ground truths for training and instead incorporates the physics of gravitational
lensing directly into the architecture. By embedding the lens equation into the learning process, the
model not only enhances image resolution but also extracts key information about the lens system,
such as the deflection angle and the underlying mass distribution of dark matter. The novelty of our
approach is that by including the lens equation directly into our architecture, it does not have to be
learned during training.

This approach has the potential to revolutionize the analysis of strong lensing datasets, particularly
as upcoming surveys, such as Euclid [17, 12] and the Legacy Survey of Space and Time (LSST;
[20]), are expected to deliver an unprecedented volume of lensing images. By addressing the current
limitations imposed by sparse datasets and unsupervised learning, our work offers a robust framework
for improving image resolution and gaining further insight into the nature of dark matter.

2 Data and methods

2.1 Datasets

For this study, we use simulated galaxy-galaxy strong lensing images that closely resemble data
from real experiments. They represent a mock instrument with point-spread function ∼ , and two
that represent mock observation with Euclid and the Hubble Space Telescope (HST). To distinguish
the datasets we refer to them as Model 1, 2, and 3 respectively. Given the scarcity of observed
lensing events and the challenges posed by limited real-world data, simulations have become a crucial
resource for developing and testing machine learning models, especially for lensing systems.

We describe the datasets as ‘sparse’ due to two reasons: they contain no labelled data, i.e., no high-
resolution representations to train from, and due to the small training sample size of 1024 images
per dataset. By incorporating the physics of strong gravitational lensing into our model, we achieve
super-resolution despite these limitations. These images were generated using the publicly available
lenstronomy code, which models both the source and lens galaxies. The source galaxy is assumed
to follow a Sérsic light profile, a commonly used analytic model to describe the intensity distribution
of galaxies.

For the lensing galaxy, we implemented a Singular Isothermal Sphere (SIS) model for the dark
matter halo, consistent with the standard cold dark matter (CDM) paradigm. The lensing effect was
simulated by applying relativistic distortion to the source galaxy’s image, creating the characteristic
arcs and Einstein rings observed in strong lensing events. In addition, we have simulated the images
with three different choice of substructure: no substructure, CDM-like substructure, and axion dark
matter substructure. For more details on constructing these data sets the reader should consult [2].

The dataset includes both low-resolution (LR) images, which serve as input to the model, and
corresponding high-resolution (HR) images for evaluation. However, during the training process, the
model operates in a completely unsupervised manner, without access to the HR images, making it a
true test of its ability to extract fine details from sparse datasets.

2.2 Motivation

Strong gravitational lensing, as illustrated in Figure 1, can be described by the strong lensing equation
as follows: −→

I =
−→
S +

−→
α (x, y) (1)

Where the deflection angle,
−→
α , a property of the lens relating to its mass distribution, directs the

mapping of positions between the source light profile
−→
S (usually a galaxy) and the lensing image

−→
I .
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Figure 1: The geometry of a strong lensing system with background galaxy, lensing dark matter halo,
and observer, from left to right. The galaxy labeled Image represents the perceived location of the
true galaxy position Source due to a deflection by the dark matter halo by α⃗.

Figure 2: Physics-informed super-resolution model schematic

With the deflection angle and a known source profile, we can very easily create lensing images at any
resolution, which is the principle our work is based on. For this purpose, we use the Sérsic profile, a
good approximation of a galaxy’s light profile [7] [24].

2.3 Model architecture

We present a Physics-Informed architecture that uses the physics of strong gravitational lensing in the
unsupervised training of a super-resolution network. Figure 2 presents the model’s construction. A
single-image super-resolution convolutional neural network (SISR CNN) is used to extract deflection
angle representations at the required resolution from the lensing images. The network is constructed to
deliver representations at the required resolution using sub-pixel convolution layers, and is constructed
with residual connections [15]. The extracted deflection angle is used in the lensing equation to
reconstruct the source image, which is then fit on the Sérsic profile. The Sérsic profile, along with the
earlier extracted deflection angle in the lensing equation is used to produce up-scaled lensing images.
Using the deflection angle to obtain the Sérsic source as a continuous mathematical function is what
enables the up-scaling of the lensing images to any required resolution, in an unsupervised manner.
Training is preformed ‘indirectly’ through the imposition of several physical and mathematical
constraints, as described in the following section.

2.4 Losses and constraints

Multi-scale loss Super-resolution inherently requires the characteristics of the low-resolution
images to be preserved when up-scaling. This property is used as a constraint, which is imposed
on different image scales: in the dimensions of the input images, in the dimensions of the output
super-resolution images and, on a downscaled version of the lensing images.
The constraints that follow are imposed on many of the described image scales.
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Mean squared error (MSE) The MSE between the regenerated source images and the Sérsic
profile, and the MSE between the input lensing images and the re-lensed output images are used as
constraints. This guides training of the CNN to produce the deflection angle.

Variation density (VD) loss This quantity measures the the total change the deflection angle
undergoes in both x and y directions, normalized by image size. It is essentially a smoothness
constraint, aimed at ensuring the deflection angle is devoid of extreme-valued artifacts, and rather
stays fairly continuous. A weight is attached to this loss as a coefficient, to control the permitted
variation amount. This helps ensuring meaningful convergence, as the MSEs described earlier are
often not sufficient by themselves.

3 Results & Discussion

We evaluate the model’s performance by comparing the super-resolved (SR) images with separately
simulated high resolution (HR) images. The three metrics used are the MSE between the SR and
the HR images, the Structural Similarity Index Measure (SSIM), and the Peak Signal-to-Noise Ratio
(PSNR). Table 1 contains the sub-structure wise results of our model.

Table 1: Sub-structure-wise results of the Physics-Informed training

Dataset Sub-structure MSE SSIM PSNR

No sub-structure 0.00500 0.720 23.508
Model-1 Axion DM (vortex) 0.00291 0.768 25.906

CDM (sub-halo) 0.00364 0.748 24.988

No sub-structure 0.00237 0.223 26.396
Model-2 Axion DM (vortex) 0.00272 0.214 25.812

CDM (sub-halo) 0.00264 0.216 25.932

No sub-structure 0.00199 0.732 27.356
Model-3 Axion DM (vortex) 0.00244 0.715 26.463

CDM (sub-halo) 0.00232 0.715 26.683

Lower SSIM scores in the Model-2 dataset Model 2, which represents a mock Euclid-like detector,
has a significantly lower PSF compared to Model 1 and Model 3 (which mimic a fake detector and
the Hubble Space Telescope, respectively). The lower PSF in the Euclid-mock dataset causes broader
and more blurred features in the observed images, making it harder for the model to distinguish
fine details. This results in reduced SSIM scores, as the model struggles to accurately reconstruct
high-resolution images from less detailed, blurred inputs. In contrast, Model 3 (HST-like) benefits
from a higher PSF, capturing sharper, more distinct features that allow for better super-resolution
performance. Similarly, Model 1, while synthetic, was designed to have a PSF similar to HST,
explaining its comparable performance. Thus, the poorer results for Model 2 can largely be attributed
to the limitations imposed by the lower PSF in the mock Euclid data.

Training sensitivity to the VD loss It was observed that meaningful convergence during training
depended on the weights of the VD loss. Weights that are too small do not bring the required
smoothness in the deflection angle, while ones that are too large cause over-smoothing, limiting
the model from producing accurate deflection angles. The accuracy of the deflection angle guides
the reconstruction of the source image and the eventual super-resolution of the lensing images.
Inaccuracies produced can magnify through the pipeline, and to arrive at an optimal selection for the
VD loss weights, a Bayesian optimization pipeline or a decaying weight approach can be used.

Qualitative estimation of errors Errors in the described architecture can arise from two sources: (1)
the accuracy limitation of the SISR CNN used in extracting the deflection angles and (2) the accuracy
in the estimation of the source representation by the Sérsic profile. For lensing images produced with
more complex sources that cannot be accurately captured by a Sérsic profile, super-resolution of the
lensing images through this pipeline may bring inaccuracies and difficulty in ensuring convergence.
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Application to real images Real images either being images of real lensing systems or being lensing
images simulated using real galaxy images can be analyzed by this architecture. The performance
of the model on such images however is dependent on the accurate reconstruction of the source
images by the Sérsic profile. To ensure better approximation, a combination of Sérsic profiles can be
employed.

In summary, this work introduces a physics-informed, unsupervised approach to super-resolving
strong gravitational lensing images, addressing the challenges posed by sparse datasets. By embedding
the physics of strong gravitational lensing into the neural network architecture, our method provides
improved image quality and model performance while preserving critical information about dark
matter substructure. The model’s performance across multiple datasets, particularly for varying
instrument characteristics, highlights its adaptability and robustness. Moving forward, this approach
holds significant promise for future large-scale surveys like Euclid and VRO, where high volumes
of lensing data will become available. By refining the resolution of lensing data, our model sets the
stage for more detailed studies into the nature of dark matter, paving the way for new discoveries in
fundamental physics. Further improvements, particularly in handling diverse lensing conditions and
noise characteristics, will enhance its applicability across a wider range of observational data.
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