
Video-Driven Graph Network-Based Simulators

Franciszek Szewczyk
University of Groningen

f.szewczyk@student.rug.nl

Gilles Louppe
University of Liège

g.louppe@uliege.be

Matthia Sabatelli
University of Groningen
m.sabatelli@rug.nl

Abstract

Lifelike visualizations in design, cinematography, and gaming rely on precise
physics simulations, typically requiring extensive computational resources and
detailed physical input. This paper presents a method that can infer a system’s
physical properties from a short video, eliminating the need for explicit parameter
input, provided it is close to the training condition. The learned representation is
then used within a Graph Network-based Simulator to emulate the trajectories of
physical systems. We demonstrate that the video-derived encodings effectively
capture the physical properties of the system and showcase a linear dependence
between some of the encodings and the system’s motion.

1 Introduction

Realistic simulations of physical processes are crucial in engineering for validating product integrity
and functionality under extreme conditions. Major animation studios rely on physics simulations
to craft internationally acclaimed films (Jiang et al., 2016). Similarly, game developers aim for
immersive experiences with realistic physics. Each one of these applications imposes distinct
requirements: game designers prioritize real-time performance, while filmmakers and engineers
prefer higher accuracy at the cost of longer computation times. While advances in computational
power have enabled more complex simulations, traditional methods require detailed physical input
and domain expertise. In this work, we aim to overcome these limitations by creating a system
capable of simulating various materials based solely on short video clips. Once trained, our model
can be presented with a short video of a physical system to infer its physical properties, which are
later used in a Graph Network-Based Simulator (Sanchez-Gonzalez et al., 2020) framework to predict
the motion of various systems. We find that the encodings generated from the videos differentiate
between different physical properties of the recorded system and that there is a linear correspondence
between the physical encoding and the final prediction of the model.

Preliminaries Employing notations akin to Battaglia et al. (2018) we define a graph as a tuple
G “ pV,Eq, where V “ tviui“1:Nv is the set of vertices, with vi denoting the attributes of the
vertex and E “ tpek, rk, skquk“1:Nk is the set of edges with ek being the edge’s attribute, rk the
index of the receiver node, and sk the index of the sender node. Each edge encodes the direction
and the distance between two vertices. A GNS, modeled by a graph neural network, denoted as
gϕ : pX,Pq Ñ Y, maps a state of the system Xt P X to per-particle accelerations - Y t P Y. Each
vertex attribute vi is a concatenation of two components: the velocity of the particle i in each of
the last C P N` simulation steps and a physical encoding P P P, which represents the physical
properties of the material, allowing the network to infer various types of systems. The subsequent
state Xt`1 is then derived using a semi-implicit Euler integrator. The processing within the GNS
typically encompasses three key stages: i) encoding, ii) processing, and iii) decoding. The encoding
stage maps the original graph into latent space. The processing stage consists of M message passing
steps. Finally, in the decoding phase, the final vertex attributes are decoded to obtain per-particle
accelerations. The Graph Network is trained on a dataset compiled from multiple trajectories of

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.



a physical system. While Sanchez-Gonzalez et al. (2020) explicitly provide the system’s physical
encoding, P , to the model, it is worth noting that this information may not always be available. We
will now propose an extension to the GNS framework that involves implicitly learning this physical
encoding thanks to a short video of the system.

2 Video-Driven GNS

Figure 1: The video encoding P is com-
bined with vertex attributes to form the
initial graph G0. Message passing, per-
formed by the Graph Processor, iterates
M times. Subsequently, dynamic data
is decoded, and particle positions are up-
dated using an integrator.

Our goal is to construct an architecture that is capable of
inferring the motion of diverse physical systems from short
videos: we call this modification of the original GNS the
Video-Driven Graph Network-based Simulator (VDGNS).
Our methodology comprises two principal components: a
VIDEO ENCODER responsible for deducing the physical
encoding, denoted as P , and a regular GNS as described
above. The architectural diagram is depicted in Figure 1.
Our approach is remarkably straightforward: given a se-
quence of n frames representing the visual representation
of system S as F t1:tn “ pF t1 , ..., F tnq P F, we define a
VIDEO ENCODER, denoted as f : F Ñ P, where P P P
represents a vector containing the latent representation of
the physical properties of S. Once the models are trained,
this formulation allows us to present the system with a
short video input and infer a full trajectory of a system
given some initial condition. The entire system can be
trained jointly by regressing over the final predicted ac-
celerations using standard gradient-based optimization. It
is important to note that during training, we ensure that
the output of the VIDEO ENCODER solely depends on
the physical attributes of the system rather than the par-
ticular motion type or direction depicted in the video. To
achieve this, we employ a customized batching procedure.
Initially, we sample a state Xt and its corresponding tar-
get accelerations Y t from a trajectory of some system.
Then, we randomly select one of the videos depicting that
particular system class, denoted as F t1:tn , irrespective of
whether Xt and Y t sampled earlier are part of the same
trajectory. This approach ensures that the only linkage
between the system’s state and the video lies in the dy-
namical properties of that specific system, facilitating the
VIDEO ENCODER in learning appropriate embeddings.
Generally, one is free to choose a specific implementation
of the functions inside of the GNS as well as the architecture of the VIDEO ENCODER. In our
experiments, we follow the original approach (Sanchez-Gonzalez et al., 2020) and implement all
encoding, processing, and decoding functions of the GNS as Multi-Layer Perceptrons (MLPs). In
the VIDEO ENCODER, the frames are encoded into a low-dimensional representation before being
passed into a Long Short-Term Memory network (LSTM) (Hochreiter and Schmidhuber, 1997), an
approach based on Yang et al. (2017).

3 Experiments

Benchmark We compare our architecture to a baseline model that directly uses a one-hot encoding
of the system class, bypassing the approximation of the physical encoding P . This allows us to treat
the baseline as the performance limit for our architecture. The model’s performance is evaluated on a
task involving granular materials comprising hundreds of particles within a two-dimensional space.
Rather than assessing the interpolation capabilities of the VIDEO ENCODER, we focus on the GNS
by treating it as a trajectory generator for diverse systems, including those unencountered during
training.

2



Model The VIDEO ENCODER processes flattened video frames using a 3-layer MLP with tanh
activations, producing a 192-dimensional encoding for each frame. This sequence of encodings
is then passed through a single LSTM block, which outputs a 4-dimensional vector representing
the physical encoding P . The dimensionality of P is chosen to match the one-hot encoding of the
system class for a fair comparison against a baseline model. The GNS operates on a latent graph
representation, where node and edge attributes are 48-dimensional vectors. The graph processing
stage includes M “ 3 message-passing steps. A detailed account of our architecture is provided in
Appendix B.

Task & Datasets We consider four distinct classes of systems: water, sand, snow, and elastic,
simulated using the Taichi-MPM simulator Hu et al. (2018). Most of these system classes inherently
lack interoperability. For instance, snow particles form clumps, a characteristic absent in other
systems. The elastic particles rigidly maintain their internal structure, resulting in a stiff object
that rebounds from the environment’s boundaries, behaving similarly to a rubber ball. Rather than
quantitatively assessing the accuracy for systems not included in the training dataset, we focus on the
representations generated by the VIDEO ENCODER. Subsequently, we sample points within this latent
space, feed them into the GNS and analyze the impact of the video encoding on final predictions.

For training, we generate 30 trajectories for each of the four aforementioned classes. Each trajectory
comprises 400 steps, covering 4 seconds in the simulation. At the onset of each trajectory, a circle
of particles with a random radius is positioned randomly within the simulation boundaries. Due
to computational constraints and the highly complex behavior observed at the initial stages of the
simulation, the first second is excluded from both training and evaluation datasets. Drawing inspiration
from Yang et al. (2017), the system’s rendering is overlayed on one of the 10 images selected from
the dataset of indoor scene images Quattoni and Torralba (2009). Limiting the number of images
ensures consistent backgrounds across classes, mitigating the risk of the VIDEO ENCODER learning
the backgrounds rather than the actual physical systems. To introduce complexity, the transparency
of the overlay varies randomly between 50% and 100% across trajectories. The rendering color
of the physical material is chosen randomly to increase dataset diversity. The videos are rendered
at 20 frames per second with a resolution of 64 ˆ 64 in the RGB color space. Pixel values are
normalized between 0 and 1. The generated graphs contain the C “ 3 most recent velocities and
edges are formed between two particles whenever the distance between them is smaller than 12%
of the simulation width. During each batch generation, 8 trajectory steps are sampled. Each of
these steps is randomly paired with one of the videos containing the same system class. We note
that this procedure creates no linkage between a trajectory step and the video of the same trajectory.
For robustness, a normally distributed noise with a standard deviation of 0.05 is added to the edge
embeddings. Similarly, the velocities included in the node embeddings are augmented with a similar
noise with a standard deviation of 0.002. These values were chosen to alter the embeddings by
roughly 20%. For the evaluation, we generate 30 more trajectories using a similar procedure, but
without adding artificial noise.

Metrics We quantitatively evaluate the performance of VDGNS by reporting the Acceleration
Error and the Rollout Error. The first one aims to measure the system’s instantaneous accuracy and
calculates the Mean Squared Error (MSE) between the true and predicted acceleration vectors to
measure a one-step error. The long-term accuracy assessment is performed by sampling an initial
condition and a random video of the same physical system for each trajectory in the test set. Then, we
infer the rest of that trajectory using the trained model. We take inspiration from Sanchez-Gonzalez
et al. (2020) and their use of optimal transport (Villani, 2021) to calculate the Wasserstein distance
using the Euclidean norm between the true and predicted trajectory states.

4 Results

First, the one-step MSE results in Table 1 showcase a similar performance of VDGNS and the
Baseline. As shown in the top-left plot of Figure 2, both models experience an increase in one-step
MSE as noise is added to the evaluation dataset. Noise levels are reported as fractions of the noise
used during training. Models’ robustness differs between materials, but overall, both VDGNS and
Baseline show similar trends in performance degradation as noise increases. The top-middle plot of
Figure 2 further shows that the Baseline performs better than the VDGNS, but both models behave
similarly.

3



Table 1: Performance of the models on the Fluid dataset. The results are averaged across the whole
evaluation dataset.

System One-step MSE rˆ10´8s
Encoding
variance

VDGNS Baseline VDGNS
Water 11.38 ˘ 0.00026 8.64 ˘ 0.00017 0.183
Snow 4.65 ˘ 0.0003 3.36 ˘ 0.00008 0.152
Sand 6.06 ˘ 0.00024 4.65 ˘ 0.00013 0.191

Elastic 5.81 ˘ 0.00014 5.01 ˘ 0.00005 0.066

0.0 0.5 1.0 1.5 2.0
Fraction of the noise used in training

0

20

40

60

80

100

In
cr

ea
se

 in
 o

ne
-s

te
p 

M
SE

 (%
)

VDGNS Water
VDGNS Snow
VDGNS Sand
VDGNS Elastic

Baseline Water
Baseline Snow
Baseline Sand
Baseline Elastic

1 2 3 4
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

M
ea

n 
Di

st
an

ce
 E

rro
r

VDGNS Water
VDGNS Snow
VDGNS Sand
VDGNS Elastic

Baseline Water
Baseline Snow
Baseline Sand
Baseline Elastic

0.5 0.0 0.5

0.05

0.00

0.05

0.10

Water
Snow

Sand
Elastic

0 1 2 3 4
Video Length (s)

0.15

0.10

0.05

Si
lh

ou
et

te
 S

co
re

Water Snow Sand Elastic
To

Water

Snow

Sand

Elastic

Fr
om

1.00 1.00 1.00 0.95

1.00 1.00 1.00 0.97

1.00 1.00 1.00 0.95

0.95 0.97 0.95 1.00
0.75

0.80

0.85

0.90

0.95

1.00

0 10 20 30 40
Friction angle

0

1

2

3

4

On
e-

st
ep

 M
SE

1e 8

Figure 2: Top-left: Percentage increase in one-step MSE as noise level increases, relative to the
MSE at zero noise. Top-middle: Mean Wasserstein distance between particles in true and predicted
trajectories. Top-right: Kernel density estimate of the first two principal components of video
encodings for each of the four classes. Thick lines represent the 85th percentile density contours.
Bottom-left: Silhouette scores of video encodings for videos of varying lengths. Bottom-middle:
The R2 score of the linear relation between the video encodings and the predicted accelerations.
Bottom-right: one-step MSE for varying angles of friction, showing the interpolation between water
and sand.

Next, we also investigate the effectiveness of the physical encodings generated by the VIDEO
ENCODER. The top-right plot of Fig. 2 shows a kernel density estimate of video encodings for
each system class, reduced to 2 dimensions using Principal Component Analysis. The results reveal
the model’s ability to produce meaningful representations. For example, the embeddings for water
and sand systems are similar due to lateral particle dispersion upon impact, while elastic and snow
systems also show comparable embeddings, likely because snow, like elastic systems, can bounce
upon impact before dispersing.

The quality of video encodings is influenced by the length of the video. In the bottom-left plot of Fig.
2, we present the silhouette scores of the video encodings as a function of video length. The results
show that longer videos yield better separation and higher quality in the encodings for each system
class. However, the improvement in encoding quality diminishes significantly for videos longer than
one second.

To analyze the impact of video encodings on the final predictions, we first compute the mean
encoding for each system class. Then, we use linear interpolation to generate 10 intermediate
encodings between each pair of classes. Next, we analyze how these encodings impact the predicted
per-particle accelerations in the evaluation dataset. We focus on the linearity between the video
encodings and the final predictions. The mean R2 score is calculated by comparing predictions

4



from the interpolated encodings to the linear interpolation of the predictions for each class. These
results are shown in the bottom-middle plot of Fig. 2, indicating a strong linear relationship across all
classes.

Finally, we analyze the interpolation capabilities of our model. While the system classes lack
interoperability, we exploit the implementation of the simulator. The sand class has a parameter
for the angle of friction, set to 45 degrees by default. When set to 0, the system behaves like the
water class. To test the model’s ability to interpolate between systems, we create an additional
evaluation dataset. This dataset includes 4 trajectories for 15 system classes, with the friction angle
increasing from 0 to 45 degrees. We then evaluate the system’s one-step accuracy on this dataset.
The bottom-right plot in Figure 2 shows the one-step errors for varying angles of friction.

5 Discussion & Conclusion

Our proposed VDGNS architecture performs very similarly to the baseline despite being trained
without being explicitly provided with the system’s physical properties. While the results obtained by
the baseline are generally slightly better, it is worth noting that when investigating the mean distance
errors between the particles over entire trajectories, both models exhibit very similar and low rollout
error patterns. Furthermore, the models are robust to a limited amount of noise, although some
materials are more sensitive than others. These findings support the notion that the VIDEO ENCODER
is capable of extracting meaningful representations that the GNS can make use of. Importantly,
the video encodings clearly distinguish between the physical properties of the system. Further, we
consider the main limitation of our approach to be the need for prior knowledge of the system classes
that the videos belong to. Specifically, each video and particle trajectory in the dataset must be
manually assigned a class, reducing the method’s generalization capabilities. Unsupervised learning
techniques could be used to overcome this shortcoming. We believe that the generation of such video
encodings based on real, not simulated, data will further improve the effectiveness and applicability
of the GNS framework.

References
Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,

Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. A
moving least squares material point method with displacement discontinuity and two-way rigid
body coupling. ACM Transactions on Graphics (TOG), 37(4):150, 2018.

Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. The material
point method for simulating continuum materials. In Acm siggraph 2016 courses, pages 1–52.
2016.

Ariadna Quattoni and Antonio Torralba. Recognizing indoor scenes. In 2009 IEEE conference on
computer vision and pattern recognition, pages 413–420. IEEE, 2009.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pages 8459–8468. PMLR, 2020.

Cédric Villani. Topics in optimal transportation, volume 58. American Mathematical Soc., 2021.

Shan Yang, Junbang Liang, and Ming C Lin. Learning-based cloth material recovery from video. In
Proceedings of the IEEE International Conference on Computer Vision, pages 4383–4393, 2017.

5



A Additional Figures

Figure 3 contains sample trajectories and their renderings, while the predicted trajectories are
visualized in Figure 4.

Figure 3: Sample trajectories and corresponding videos for each of the four classes. Time flows right.

Tr
ue

Water Sand

Pr
ed

ict
ed

Tr
ue

Snow Elastic

Pr
ed

ict
ed

Figure 4: Comparison of true trajectories and trajectories predicted using our approach in the Fluid
experiment. Time flows right.

B Model Architecture

The VIDEO ENCODER processes a series of 64 ˆ 64 RGB images. Each frame is encoded into a
low-dimensional representation with a series of linear layers, each followed by a tanh activation
function. This output serves as the input for an LSTM with a 32-dimensional hidden state. Finally,
the LSTM output is mapped to a 4-dimensional physical encoding.

Functions constituting a Graph Network are implemented as multi-layer perceptions with a sin-
gle hidden layer and a tanh activation. Table 2 summarizes the model’s architecture and exact
dimensionality.

6



Table 2: Construction and training parameters of the Video-Driven GNS for the Fluids task.
MLP px; y; zq indicates a multi-layer perceptron with an x-dimensional input, z-dimensional output
and hidden layers of size y.

Parameter Value Comments
Video Encoder

Frame encoder MLP p12, 288; 256; 192; 192q

Flattening a 3-channel RGB frame
of 64x64 resolution results
in a 12,288-element vector

Hidden state
of the LSTM 32

Final mapping layer MLP p32, P “ 4q

Graph Encoder

Edge encoder MLP p10; 48; 48q

The initial vertex attribute consist
of C “ 3 past two-dimensional velocities
and 4-dimensional physical encoding P ,

resulting in a total of ten values.

Vertex encoder MLP p3; 48; 48q

The direction of the edge requires
two values. Involving the additional,
scalar value, representing the length

of the edge results
in three values.

Graph Processor
Message passing

steps (M ) 3

Edge processor MLP p144, ; 48; 48q

144-dimensional input is created
by concatenating two 48-dimensional

edge embeddings and a single
48-dimensional node embedding.

Vertex processor MLP p96; 48; 48q

96-dimensional input is created by
concatenating

a single 48-dimensional vertex embedding
and an aggregation

of 48-dimensional edge embeddings.
Graph Decoder

Vertex decoder MLP p48; 48; 2q
The output is a 2-dimensional

vector representing acceleration.

7


	Introduction
	Video-Driven GNS
	Experiments
	Results
	Discussion & Conclusion
	Additional Figures
	Model Architecture

