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Abstract

In this paper, we propose a novel application of Taylor-mode Automatic Differ-
entiation (AD) to efficiently compute high-order derivatives in physics-informed
neural operators (PINOs). Traditional approaches to automatic differentiation,
particularly reverse-mode AD, suffer from high memory costs and computational
inefficiencies, especially when dealing with high-order Partial Differential Equa-
tions (PDEs) and large-scale neural networks. Our method leverages Taylor-mode
AD to forward-propagate Taylor series coefficients, enabling the efficient compu-
tation of high-order derivatives. We demonstrate our approach on two prominent
neural operator architectures: DeepONets and Fourier Neural Operators (FNOs).
Results indicate an order-of-magnitude speed-up over state-of-the-art methods for
DeepONets and an eightfold acceleration for FNOs. Our code is publicly available
at : https://github.com/HicrestLaboratory/Taylor-Mode-Neural-Operators.

1 Introduction

Partial Differential Equations (PDEs) are central to modeling physical systems in domains like fluid
dynamics and material sciences. Traditional numerical solvers, such as finite element methods, often
require fine discretization of the physical domain and a significant number of time-stepping iterations
to achieve high accuracy, making them computationally expensive, especially for repeated solutions
under varying conditions. Machine learning (ML) methods have recently emerged as promising
alternatives, using neural networks (NNs) to approximate these complex mappings Kovachki et al.
[2021], Li et al. [2020], Lu et al. [2019]. Neural operators, including DeepONets Lu et al. [2019]
and Fourier Neural Operators (FNOs) Li et al. [2020], learn mappings between function spaces
and offer advantages over traditional solvers in speed and scalability. However, they often require
large datasets and may struggle with generalizing to unseen conditions Li et al. [2021a], Liu et al.
[2022]. Physics-informed learning techniques, such as Physics-Informed Neural Networks (PINNs),
embed physical laws directly into the learning process, reducing data requirements and improving
generalization Raissi et al. [2019], Karniadakis et al. [2021], Jnini et al. [2024b]. The extension of
this concept to neural operators—Physics-Informed Neural Operators (PINOs)—allows for more
efficient and physically accurate solutions to PDEs Wang et al. [2021b].

Computing the loss functions for PDEs in both PINNs and PINOs, particularly for higher-order
derivatives, typically relies on automatic differentiation (AD). However, AD, especially reverse-mode
AD, can become computationally expensive due to the need to store intermediate variables (leaf
nodes) and the exponential blowup in memory and computational cost when calculating high-order
derivatives. This makes using standard AD methods prohibitive for large-scale networks or high-order
PDEs. Taylor-mode Automatic Differentiation Bettencourt et al. [2019] has been proposed as an
extension of forward-mode AD to efficiently compute high-dimensional derivatives, avoiding the
exponential scaling of nested differentiation and significantly reducing computational costs. While it
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has been applied to train architactures like Multi-Layer Perceptrons (MLPs), its potential for use in
neural operators architectures remains largely unexplored.

In this work, we leverage Taylor-mode Automatic Differentiation to reinterpret the computation graph
of a neural operator’s input derivatives as an expanded network with shared weights, enabling efficient
computation of high-order derivatives at a cost proportional to a single forward pass. We derive
specialized propagation rules for two well-known architectures—DeepONet and Fourier Neural
Operators (FNOs)—demonstrating an order-of-magnitude speed-up for DeepONets and an eightfold
speed-up for FNOs compared to state-of-the-art techniques, as shown in Section 5.

2 Related works

Efficient derivative computation is essential in scientific machine learning, especially when incorpo-
rating physical constraints into the loss function. Traditionally, reverse-mode AD is used in PINN
training but incurs high memory costs due to storing all leaf nodes during the backward pass. To
enhance AD efficiency, several methods have been proposed. For example, Separable PINNs Cho
et al. [2023] reduce the number of leaf variables by separating variables for Multi-Layer Perceptrons
(MLPs). Similarly, the Zero Coordinate Shift (ZCS) algorithm introduced by Leng et al. [2024]
achieves state-of-the-art results for neural operators by simplifying derivative computation, reducing
the number of leaf variables to one per spatial or temporal dimension. This method serves as a
benchmark for our approach, as discussed in Section 5. Taylor-mode AD was initially introduced in
PINNs by Wang et al. [2022] to handle high-order derivatives efficiently for MLPs and was used in
Dangel et al. [2024] to derive an efficient KFAC approximation for PINNs. To our knowledge, this
work is the first to apply Taylor-mode forward propagation to speed up the training of PINOs.

3 Background: Operator Learning

Operator learning focuses on approximating an operator G : X → Y that maps between function
spaces X and Y by employing a neural surrogate Gθ such that Gθ ≈ G Li et al. [2020]. A common
application is the emulation of the solution map G : f 7→ u for a given PDE, where u = Gf represents
the solution corresponding to the input data f .

Neural operators are generally trained using a regression-based approach, although it is possible
to incorporate PDE information into the training process Li et al. [2021b]. In such cases, the loss
function for the neural operator typically takes the form:

L(θ) =
1

2

N∑

i=1

∥Gθ(fi)− ui∥2Y + ∥L(Gθ(fi))− fi∥2Y ,

where (fi, ui)i=1,...,N represents the training dataset, with the solutions u1, . . . , uN typically gener-
ated by a classical numerical solver. The inclusion of the second term in the loss function can act as a
regularization term in the absence of data, it leads to increased accuracy and generalization capability
for the Neural Operators Wang et al. [2021b]. We will focus on two of the prominent neural operator
architectures that are the deep operator network (DeepONet) Lu et al. [2019] and the Fourier neural
operator (FNO) Li et al. [2020]. For an background overview of these architectures, we refer to
Appendix 7.1.

4 Taylor-Mode Neural Operators(TMNO)

Taylor-mode automatic differentiation (AD) involves propagating Taylor series coefficients or di-
rectional derivatives through a neural network’s computational graph. This technique effectively
computes higher-order derivatives in Multi-Layer Perceptrons (MLPs) Wang et al. [2021a], Dangel
et al. [2024]. An overview of Taylor-mode AD forward propagation rules for MLPs is provided
in Appendix 7.2. A neural operator transforms an input function v(x) ∈ V , where V is a suitable
function space, into an output function u(x) = G(v)(x) ∈ U , where U is another function space,
through a sequence of intermediate representations z(l)(x) ∈ Rh(l)

for each layer l = 1, . . . , L. Each
intermediate representation z(l)(x) can be viewed as a finite-dimensional projection or discretization
of the underlying function defined on a domain x ∈ D ⊂ Rd.
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Taylor-Mode Propagation rule in DeepONet In DeepONet, the operator G(v)(ξ) is given by:

G(v)(ξ) =
p∑

k=1

bk(v)tk(ξ) + b0,

where bk(v) are outputs of the branch network and tk(ξ) are outputs of the trunk network. Using
Taylor-mode AD, we propagate derivatives through the trunk network while treating the branch
outputs as linear layers across function dimensions. For DeepONets, the input to the augmented trunk
network consists of Taylor coefficients evaluated at collocation points of the output domain.First-order
derivatives corresponding to the trunk inputs are set to standard basis vectors, while higher-order
derivatives (m > 1) are initialized to zero.

Derivative Propagation rule through a DeepONet

The N -th order derivative with respect to ξ is computed as:

∂NG(v)(ξ)
∂ξi1 · · · ∂ξiN

=

p∑

k=1

bk(v)
∑

P

σ(m)
(
W(L)z(L−1)

)
⊙
∏

p∈P

(
W(L) ∂

|p|z(L−1)

∏
j∈p ∂ξj

)
.

Taylor-Mode Propagation rule in FNOs The Fourier Neural Operator (FNO) parameterizes the
integral kernel in Fourier space, learning the Fourier coefficients of the output function for efficient
computation. The input function v(x) is lifted to a higher-dimensional representation z0(x) ∈ Rdz

via a local transformation P . Iteratively, L Fourier layers are applied, each involving a Fast Fourier
Transform (FFT), multiplication by a weight tensor Rl, and an inverse FFT:

zl+1(x) = σ
(
F−1 (Rl · F(zl(x))) +Wl · zl(x) + bl

)
,

where Wl and bl are learnable parameters, and σ is a nonlinear activation function. The final output
is projected back to the original space:

u(x) = Q(zL(x)),

The FNO approximates solution operators for PDEs by combining FFT-based convolution with
nonlinear transformations:

u(x) = Q ◦ F−1 ◦RL ◦ F ◦ · · · ◦ F−1 ◦R1 ◦ F ◦ P (v(x)).

For an arbitrary dimensional FNO, we concatenate the computational grid, where the input func-
tions are discretized, with the input functions themselves and feed them into the FNO. Due to the
linearity of the Fast Fourier Transform (FFT), its inverse, and convolution, derivative propagation is
handled similarly to linear layers. The augmented network receives Taylor coefficients of the input
channels—either initialized to zero or computed numerically for PDE evaluation—concatenated with
the grid coefficients. First-order derivatives corresponding to the grid input are set to standard basis
functions, while higher-order derivatives (m > 1) are initialized to zero. Forward propagation of the
k-th derivative is treated as an additional batch element, enabling parallel computation of higher-order
derivatives. The main computational bottleneck arises in handling non-linearities, which depend on
lower-order derivatives (see Appendix 7.3 for a visual overview).
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Derivative Propagation through a Fourier Neural Operator (FNO) Layer

The N -th order derivative of the output u(x) with respect to spatial coordinates is computed
as:

∂Nu(x)

∂xi1 · · · ∂xiN
= Q ◦ F−1 ◦RL ◦ F

(
∂NzL(x)

∂xi1 · · · ∂xiN

)
,

where zL(x) is the hidden state at the final Fourier layer L.
Derivative Propagation through Each FNO Fourier Layer

∂Nzl+1(x)

∂xi1 · · · ∂xiN
=

∑

P∈Partitions(N)

σ(|P |) (zl(x))⊙
∏

p∈P

(
F−1

(
Rl ◦ F

(
∂|p|zl(x)∏

j∈p ∂xj

))

+Wl
∂|p|zl(x)∏

j∈p ∂xj

)
. (1)

5 Experiments

In this section, we validate the effectiveness of our proposed TMNO approach on two challenging
high-order PDEs: the 4th-Order Steady Streamline Navier-Stokes(NSE ) equation for Kovasznay
flow and the Kuramoto-Sivashinsky (KS) equation. Detailed hyperparameters are provided in
Appendix 7.4. Our code is publicly available at : https://github.com/HicrestLaboratory/Taylor-Mode-
Neural-Operators.

Figure 1: Evolution of relative L2 error over time for our method compared to benchmarked methods
for both experiments accross five different seeds on validation data. The solid lines represent the
median, and the shaded areas indicate the interquartile range.

4th-Order Steady Streamline NSE for Kovasznay Flow: The Kovasznay flow serves as a bench-
mark for the NS equations with analytical solutions. By employing a stream function ψ(x, y) for a
2D incompressible fluid, the pressure term is eliminated, resulting in a 4th-order steady-state vorticity
equation derived from the curl of the NSE equations. This formulation, given by

∂ψ

∂y

∂

∂x
(∇2ψ)− ∂ψ

∂x

∂

∂y
(∇2ψ) = ν∇4ψ,

where ν = µ
ρ is the kinematic viscosity, ∇2 is the Laplacian, and ∇4 is the biharmonic operator,

satisfies mass continuity and models the evolution of vorticity. We use a DeepONet trained with
TMFNO and benchmark it against ZCS proposed in Leng et al. [2024]. The input to the branch net of
the DeepONet is the Reynolds number at which the solution is being resolved, and the output is the
streamline evaluated at collocation points. We train the model purely using the Physics-Informed
Loss, without any trained labels. The input to the trunk net consists of the collocation points.
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KS Equation: The KS equation, a fourth-order nonlinear PDE, models diffusive-thermal instabili-
ties in a laminar flame front. It is expressed as

∂u

∂t
+

1

2

∂u2

∂x
+
∂2u

∂x2
+
∂4u

∂x4
= 0,

with periodic boundary conditions u(t, 0) = u(t, L). Initial conditions are sampled as u(x, 0) =
sin
(
16π x

L

)
+ 0.1N (0, 1), where N (0, 1) denotes Gaussian noise. We employ a FNO trained with

our Taylor-Mode Algorithm and benchmark it against a classical approach using nested Jacobian-
vector products(JVP). In this case, the FNO maps initial conditions to spatio-temporal solutions and
is trained with the Physics-informed Loss and data obtained from an Exponential Time Differencing
solver. While this case can be handled with the analytical derivative proposed in Li et al. [2023],
our example illustrates the speedup offered by our method for computing high-order derivatives,
especially for non-periodic functions or those with shock waves.

Results and Discussion: Figure 1 shows that TMNO achieves a faster evaluation of the same
derivative compared to benchmark methods. For the NSE , TMNO converges an order of magnitude
faster than the ZCS method. For the KS equation, it similarly outperforms the JVP-based approach
and achieves an eightfold speedup.

6 Conclusion

We introduced Taylor-Mode Neural Operators, an approach that treats the computation graph of
neural operator input derivatives as a larger net with weight sharing, improving efficiency in derivative
computations for physics-informed neural operators. Our method reduced the computational cost of
training, achieving up to an order-of-magnitude speed-up for DeepONet architectures and an eightfold
improvement for FNOs compared to current techniques. Future applications of interest will focus
on optimizing parallelization of derivative computations and expanding the use of TMNO to more
neural operator models and applications, notable applications in the context of Scientific Machine
Learning could include the incorporation of Physical constraints into the architecture of the Neural
Operators in line with the work proposed in Jnini et al. [2024a] and to speed-up the computation in
second-order optimizers for Neural Operators Dangel et al. [2024], Jnini et al. [2024b], Jnini and
Vella [2024].
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7 Appendix

7.1 Background: Neural Operators

DeepONet DeepONet approximates operators by discretizing the input function v into a finite-
dimensional space, sampling it at specific points {x1, x2, . . . , xm}. It consists of two sub-networks:
the "trunk" network, which takes coordinates ξ ∈ D′ as input, and the "branch" network, which
processes the sampled values of v. The operator is expressed as:

G(v)(ξ) =
p∑

k=1

bk(v)tk(ξ) + b0,

where b0 is a bias term, {b1(v), b2(v), . . . , bp(v)} are outputs of the branch network, and
{t1(ξ), t2(ξ), . . . , tp(ξ)} are outputs of the trunk network.
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Fourier Neural Operator (FNO) The Fourier Neural Operator (FNO) parameterizes the integral
kernel in Fourier space, learning the Fourier coefficients of the output function for efficient computa-
tion. The input function v(x) is lifted to a higher-dimensional representation z0(x) ∈ Rdz via a local
transformation P . Iteratively, L Fourier layers are applied, each involving a Fast Fourier Transform
(FFT), multiplication by a weight tensor Rl, and an inverse FFT:

zl+1(x) = σ
(
F−1 (Rl · F(zl(x))) +Wl · zl(x) + bl

)
,

where Wl and bl are learnable parameters, and σ is a nonlinear activation function. The final output
is projected back to the original space:

u(x) = Q(zL(x)),

where Q is another local transformation. The FNO approximates solution operators for PDEs by
combining FFT-based convolution with nonlinear transformations:

u(x) = Q ◦ F−1 ◦RL ◦ F ◦ · · · ◦ F−1 ◦R1 ◦ F ◦ P (v(x)).

7.2 Taylor-Mode Automatic Differentiation for MLPs

Consider a multi-layer perceptron (MLP) uθ = f
(L)
θ ◦ f (L−1)

θ ◦ · · · ◦ f (1)θ of depth L ∈ N, where
each layer f (l)θ : Rh(l−1) → Rh(l)

is parameterized by θ(l) ∈ Rp(l)

. The network transforms an
input z(0) = x ∈ Rd into an output uθ(x) = z(L) ∈ Rh(L)

through intermediate representations
z(l) ∈ Rh(l)

.

For Taylor-mode propagation, the initial conditions for derivatives of the input are:

∂z(0)

∂xi
= ei ∈ Rd, (the i-th standard basis vector),

∂2z(0)

∂xi∂xj
= 0 ∈ Rd.

For a linear layer fθ(l)(z(l−1)) = W(l)z(l−1), the derivatives propagate as:

z(l) = W(l)z(l−1),

∂z(l)

∂xi
= W(l) ∂z

(l−1)

∂xi
,

∂2z(l)

∂xi∂xj
= W(l) ∂

2z(l−1)

∂xi∂xj
.

For a nonlinear activation function σ applied element-wise, the propagation rules are:

z(l) = σ(z(l−1)),

∂z(l)

∂xi
= σ′

(
z(l−1)

)
⊙ ∂z(l−1)

∂xi
,

∂2z(l)

∂xi∂xj
= σ′′

(
z(l−1)

)
⊙ ∂z(l−1)

∂xi
⊙ ∂z(l−1)

∂xj
+ σ′

(
z(l−1)

)
⊙ ∂2z(l−1)

∂xi∂xj
.

The general form for N -th order derivatives is given by Faà di Bruno’s formula:

∂Nz(l)

∂xi1 · · · ∂xiN
=

∑

P∈Partitions(N)

σ(|P |)
(
z(l−1)

)
⊙
∏

p∈P

∂|p|z(l−1)

∏
j∈p ∂xj

,
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7.3 Visual representation of Taylor-Mode Automatic Differentiation for FNOs
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Figure 2: Diagram showing the forward propagation of derivatives through an FNO architecture
using Taylor-mode automatic differentiation. The figure illustrates the input Taylor coefficients, their
transformation through Fourier and linear layers, and the resulting derivative components. Each block
in the figure represents a layer in the FNO architecture, with arrows indicating the propagation of
derivatives of increasing order.
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7.4 Hyperparameters for Kovasznay Flow with DeepONet

Table 1: Setup and Hyperparameters for Kovasznay Flow using DeepONet

Parameter Value

Optimizers L-BFGS

Architecture DeepONet with 4-layer MLPs

Branch/Trunk Network Sizes [100, 100, 100, 100]

Activation Function Tanh

Random Seed 0,1,2,4,42

Domain Kovasznay Flow in 2D incompressible fluid

Collocation Points (Interior) 2601

Number of Funcrions 200

Evaluation Points 9,000

Evaluation Metric Relative L2 error

Epochs 200,000 (L-BFGS)

Device NVIDIA A100 80GB

7.5 Hyperparameters for Kuramoto-Sivashinsky Equation with FNO
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Table 2: Setup and Hyperparameters for Kuramoto-Sivashinsky Equation using FNO

Parameter Value

Optimizer Adam

Architecture FNO 2D

lAYERS [64, 64, 64, 64]

Fourier Modes [30, 30, 30, 30]

Final Layer Dimension 128

Activation Function GELU

Random Seed 0,1,2,3,42

Spatial Points (nx) 512

Temporal Points (nt) 251

Time Horizon 1

Spatial domain [0,1]

Samppes 100

Batch Size 1

Learning Rate 5× 10−4

Learning Rate Scheduler StepLR (Step size: 20, Gamma: 0.5)

Epochs 1,150

Device NVIDIA A100 80GB
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