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Abstract

Latent ODE models provide flexible descriptions of dynamic systems, but they
can struggle with extrapolation and predicting complicated non-linear dynamics.
The Latent ODE approach implicitly relies on encoders to identify unknown
system parameters and initial conditions, whereas the evaluation times are known
and directly provided to the ODE solver. This dichotomy can be exploited by
encouraging time-independent latent representations. By replacing the common
variational penalty in latent space with an ℓ2 penalty on the path length of each
system, the models learn data representations that can easily be distinguished from
those of systems with different configurations. We demonstrate superior results for
simulation-based inference of the Lotka-Volterra parameters and initial conditions
by using the latents as data summaries for a conditional normalizing flow.
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Figure 1: Schematic of our path-length minimizing latent ODE model.

1 Introduction

Latent ODEs are a class of generative neural network models for sequential data, which have
seen widespread adoption as flexible empirical descriptions of dynamic systems [Chen et al., 2018,
Rubanova et al., 2019]. A common architecture design uses a sequence model, such as a Recurrent
Neural Network (RNN) [Rumelhart and McClelland, 1987] to initially encode an observed time series
{x1, . . . ,xn}. The latent representation z ∈ Rd is then evolved via numerical integration of the
changes dz/dt = fθ(t), represented by a neural network with parameters θ, from the initial time ti to
the endpoint tf . It is customary to turn the neural ODE model into a Variational Autoencoder (VAE)
[Kingma and Welling, 2013] to encourage a d-dimensional Gaussian distribution in latent space, but
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other distributions have also been shown to work well [Rubanova et al., 2019]. However, as we not
require sampling of compatible trajectories and will take measures to prevent the collapse of the
latent distribution, we impose an alternative penalty: the total length of the latent trajectory. Doing so
drastically reduces the temporal variation of the latent representations, so that the architectures targets
the parameters of the dynamical model, not its state. We will show adding a path-length penalty to
the loss improves simplicity and trainability of the models while producing more accurate predictions
over a longer time frame allowing for improved inference of system parameters and initial conditions.

2 Implementation

We adopt the architecture from Rubanova et al. [2019], which uses an ODE-RNN as the recognition
network, trained as VAE. We use a feed-forward neural network for the ODE function fθ and the
ODE solvers from the diffrax package [Kidger, 2021] for numerical integration (full details in
Appendix A). However, as our primary interest lies in accurate forecasts and inference for given
system configurations instead of fast sampling, we remove the variational aspect from the model,
replacing the Gaussianity penalty with a path-length penalty:

L =

n∑
i=1

(xi − x̃i)
2

︸ ︷︷ ︸
reconstruction loss

+ λS︸︷︷︸
min path loss

, (1)

where xi ∈ Rf denotes an observation of the system at time ti, x̃i its reconstruction by the latent
ODE model, and n the number of such observations. The path-length penalty S is given by the
Mahalanobis distance between successive points zi and zi+1 in latent space:

S =

m−1∑
i

√
(zi − zi+1)⊤Σ−1(zi − zi+1) (2)

The hyperparameter m represents the number of interpolation points within the timespan of the
observed trajectory (note this can be much greater than n), λ controls the strength of the distance
penalty. We search for best performance with a wide sweep, but we find good results for all tests
with λ ≈ 1 (see Appendix B for more details). To prevent the latent distribution from collapsing
to a point, which trivially satisfies the path-length penalty, we scale the penalty with the empirical
standard deviation in latent space Σ of batches of trajectories from different system configurations.
This diagonal matrix gets updated after every training step.

3 Experiments

As a baseline we adopt the latent ODE-RNN architecture described in Rubanova et al. [2019] as well
as an ODE-GRU encoder, and compare it to our implementation on the Lotka-Volterra preditor-prey
model. Full details about data generation are in Appendix A, while training, hyper-parameters, and
model parameters for all test cases are detailed in Appendix B. We note our models are smaller than
that used in similar works [Chen et al., 2018, Rubanova et al., 2019, Shi and Morris, 2021, Coelho
et al., 2024, Auzina et al., 2024]. We compare our results on recognition networks of the same size
(with the exception of the HBNODE trials). For all trials, we allow the baseline model to train for
up to 10 times as long as the best performing path-minimized model and report results for the best
trained model.

The Lotka-Volterra equations (LVE) are a nonlinear set of coupled first-order ODEs

dx

dt
= αx− βxy,

dy

dt
= δxy − γy, (3)

that are often used to describe the interdependence of the numbers of predators x and their prey y.
The LVEs have been found to present difficulties for latent ODE type models [Shi and Morris, 2021,
Auzina et al., 2024], especially their long-term behavior, and therefore present a good test case for
our purposes.
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Figure 2: Reconstructions of solutions for the Lotka-Volterra equations with randomly sampled initial
conditions and model parameters from within the training ranges (top) and from up to 25% beyond the training
ranges (bottom). The grey shading indicates the region where data is supplied, the purple shading indicates
extrapolation regions, i.e no model has seen training data past this point.

We use sample uniformly parameters α ∈ [1.0, 3.5], β ∈ [1.0, 3.5], δ ∈ [0.5, 0.6], γ ∈ [0.5, 0.6]
and initial conditions x0, y0 ∈ [1, 6] as in [Auzina et al., 2024]. We plot two example trajectories,
one in-domain and one out-of-domain with their analytic solution in Figure 2. For the out-of-
domain data, we move each of the 4 parameters 25% outside of their respective training ranges.

Table 1: Test data MSE and its standard deviation from
256 trials for the predator-prey system of our model
and the baseline latent ODE-RNN. We show results for
interpolation (t = 25) and extrapolation (t = 50) for
in-domain and out-of-domain parameters.
tfinal encoder Baseline model Minimum path

⟨ MSE ⟩ (std) ⟨ MSE ⟩ (std)

25 ODE-RNN 13.96 (0.57) 5.19 (0.32)
25 ODE-GRU 16.16 (4.12) 12.18 (2.92)
25 HBNODE 2.851 (0.49) N/A
50 ODE-RNN 27.87 (0.86) 12.507 (0.54)
50 ODE-GRU 17.49 (3.77) 113.06 (2.71)
50 HBNODE 440.6 (24.6) N/A

The baseline model fares well in recon-
structing in the interpolation regions (t =
0 → 25), with increasing errors at longer
times, for the in-domain test. Our model
on the right shows high accuracy even up
to large times, showing the expected cyclic
behavior of the LVE. It maintains high lev-
els of accuracy even for out-of-domain test-
ing. Summary statistics are listed in Ta-
ble 1 with trails run on both ODE-RNN
and ODE-GRU enocoders, as well as a stan-
dalone comparison to the state-of-the-art
HBNODE implementation for this problem
Xia et al. [2021].

3.1 Parameter inference

The top panel of Figure 4 visualizes the distribution of latents with our path-length penalty. We show
a UMAP [McInnes et al., 2018] projection of the LVE trajectories in latent space for a selection of
trials (shown in different colours). As expected, the addition of a path-length penalty shortens the
trajectories in our model compared to the baseline by an average factor of ≈ 30.

Table 2: Inference accuracy (relative MSE of the
posterior mean and its standard deviation in 256
trials) for the LVE parameters.

pts in-dist Baseline Minimum path

⟨ rel. MSE ⟩ (std) ⟨ rel. MSE ⟩ (std)

5 Yes 1.879 (1.88) 0.320 (0.22)
10 Yes 0.708 (0.72) 0.261 (0.24)
20 Yes 0.301 (0.30) 0.197 (0.20)

5 No 2.045 (1.97) 0.482 (0.31)
10 No 0.930 (1.2) 0.406 (0.34)
20 No 0.464 (0.39) 0.347 (0.25)

As a result, despite the time-dependent nature
of dynamical systems, the ODE integrator only
fills small regions of latent space, leaving most
of its volume free to capture the time-invariant
descriptors of the system: parameters and ini-
tial conditions. This behavior becomes clear
when we fill the UMAP with latents from our
model for 10,000 randomly selected LVE sys-
tem parameters and color-code by the parame-
ter values. The bottom panels of Figure 4 show
evident structure, which means that specific
parameters are located in specific locations in
latent space, and that variations of parameters
leads to smooth changes of latent space positions.
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Figure 3: Posterior plots from an LVE test case using a normalizing flow to infer the value of the parameters
and initial conditions, for our model (top) and the baseline model (bottom). The gray histogram shows the
posteriors for n = 5, the blue for n = 20 observations. The red dashed line indicates the true parameter value.

Posteriors with simulation-based inference The evident structuring of the latent space to follow
primarily parameter and IC values should allow for accurate inference from noisy and irregularly
sampled observations even without the explicit splitting of static and dynamic variables proposed by
Auzina et al. [2024].

To test the inference capabilities of our model, we train a normalizing flow [Rezende and Mohamed,
2015] to predict four parameters and two ICs of Equation 3 given the latent context vector from
the autoencoder as an input [Winkler et al., 2019]. Details on this implementation are given in
Appendix B. In the language of simulation-based inference, we use the latent ODE encoder to
produce summaries for potentially irregularly sampled sequence data.
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Figure 4: Top: UMAP projection of latent space trajecto-
ries for six different parameter and IC choices for the LVE
(indicated by different colors, start and end points of the tra-
jectories by circles and crosses). Bottom: UMAP projection
of the latent space of our model color-coded by parameter.

We show a sample posterior plot in Figure 3
for the inference of a fixed set of parame-
ters and ICs for a visual comparison of the
model performance. The top panels show
the results for our model, the bottom panels
for the baseline. We plot results for inference
made with 5 and 20 randomly sampled obser-
vations from the interpolation regime in gray
and blue, respectively, with the true values
indicated by vertical dashed lines. We can
see that baseline and path-minimizing model
produce latents that are inherently useful for
inference. This can partially be attributed to
the supervised training of the normalizing
flow, which can tolerate substantial confu-
sion of the inputs (such as the crossing of
latent trajectories seen in the top panel of
Figure 4) and still produce reasonable out-
puts. On closer inspection, we see that pro-
viding more data leads to narrower posteri-
ors, as expected from an inference model.
However, the baseline model is heavily bi-
ased and overconfident in the inference of
the initial conditions in the n = 5 case.

We repeated these experiments by uniformly
sampling both parameters and initial condi-
tions then taking 5, 10, and 20 data points
samples between t = 0 and t = 15 and
reporting the relative MSE of the parame-
ter and IC posterior means averaged over
256 trials. The results are summarized in
Table 2. We test the inference capabilities

for in-domain and out-of-domain parameter sets, where for the out-of-domain set we extend the
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parameter bounds to exceed the training range of the latent ODE model by 50% on both the high
and low ends. Our model consistently outperforms the baseline in all trials, with notably stronger
performance for sparsely observed data. In fact, the posterior MSE of our model with n = 5 is
comparable to the baseline model with n = 20. This behavior is retained for out-of-distribution cases.

4 Discussion and future work

Stochastic ODEs We do not test our regularization scheme on stochastic differential equations
because those lie outside the scope of this paper. However, it seems reasonable to expect that an extra
care is needed to model such systems. The type of stochasticity may be effectively represented in
latent space [Li et al., 2020], or it may resist a low-dimensional, time-invariant representation.

Chaotic systems Another limitation of our model, and latent ODE models in general, would likely
be encountered when attempting interpolation and forecasting performance for chaotic systems. While
we have demonstrated good performance in coupled and non-periodic systems, finding robustness
to out-of-distribution cases, the same strengths might lead to overconfident, temporally smooth
predictions for systems that in reality behave chaotically. Care should therefore be taken to screen for
and avoid systems in chaotic states.

State space modulation Our path-minimizing loss encourages time invariance of the latents, but
because the ODE solver operates on that space, some temporal evolution needs to be allowed. We
expect that the time “axis” only occupies a low-dimensional submanifold, but our latents are not fully
time-independent descriptions of the system configuration. To further our goal of utilizing latent
ODEs as robust inference models, we intend to combine our approach with the explicit static/dynamic
state splitting of the latent parameters described by [Auzina et al., 2024].

5 Conclusion

We introduce a novel regularization approach for latent ODE models. We remove the customary
variational loss and replace it with an instance-level path-length penalty in latent space. This loss
function can readily be used with all existing latent ODE architectures. We adopt the latent ODE-RNN
architecture and find training with the proposed loss to be more effective, reaching lower loss values
with fewer iterations. The resulting models significantly improve the interpolation and extrapolation
accuracy in three different test cases. We also find increased robustness to parameter choices beyond
the limits of the training data.

As intended, the latent distributions show little time evolution; instead, they are mostly shaped by
system parameters and initial conditions. The latent ODE encoder thus serves as an inference model,
and we find accurate inference results when using the encoder to summarize irregularly sampled
sequence data. Our straightforward modification to the training loss thus manifestly improves the
usability of latent ODE models to empirically describe dynamic systems.
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A Experimental setup and ODE details

Our latent ODE-RNN architecture is implemented in jax and equinox [Bradbury et al., 2018, Kidger
and Garcia, 2021]; the normalizing flow package is flowjax [Ward, 2024].

ODE function We use a feed forward neural network to model our ODE function fθ as in [Rubanova
et al., 2019]. We use a Tanh activation function and report the network size for all trials in Appendix B.

ODE solver For all data generation, and ODE integration of our models we use the ODE solver
from the diffrax package [Kidger, 2021]. We use the 5th order Tsit5() solver, Tsitouras’ 5/4
method (5th order Runge-Kutta), with adaptive steps and an initial dt = 0.1. We set the relative and
absolute error tolerances of 1e-4 for both values.

A.1 Data generation

We detail the data generation steps for the test cases below. We note we perform a 80, 10, 10 split for
training/testing/validation of all datasets. We add Gaussian noise to all generated data at a level of
0.05 to encourage robustness.

Lotka-Volterra equations We generate 22,000 samples from numerical solutions to Equation 3.
Each sample consists of 150 data points are randomly sampled from ti = 0 to an endpoint of tf ,
that we randomly choose from the [25, 30]. We uniformly sample for our parameters α ∈ [1, 3.5],
β ∈ [1, 3.5], γ ∈ [0.5, 0.6], and δ ∈ [0.2, 0.3], and sample randomly for initial conditions between 1
and 6 for predator and pray numbers.

B Model and training details

All models are trained on a single Nvidia A100 GPU with 1 CPU and 40GB of memory.

Lotka-Volterra equations Both models presented are trained with a hidden state of dimension
16, and a latent state of dimension 8. The ODE functions consist of 3 layers of 40 units with Tanh
activations. We used the Adam optimizer with a learning rate of 2e-3 and trained for up to 15,000
steps with a batch size of 64. The best trained model was chosen for both the baseline and our model.
We also varied the size of the hidden dimensions, latent dimension and neural ODE size between 8
and 24, 4 and 12, 24 and 100, respectively, and found no better results for either model.

Previous studies [Shi and Morris, 2021, Auzina et al., 2024] report difficulties in training the baseline
model to perform well on this problem, especially for extrapolation. They used complicated training
schemes involving iterative growing scheme [Rackauckas et al., 2020], and/or sequentially increasing
the size of the training time over multiple runs. We do not use any of these methods and simply
perform a single training phase on a fixed training set.

We performed a large parameter sweep to find optimal values of λ finding anything in the range of
λ ∈ [0.5, 2] to give us the best results and all reported results are from the trial with λ = 0.5.

Effect of penalty strength The λ parameter in Equation 1 regulates the relative strength of the path
minimization loss term compared to the reconstruction loss term. Optimal values for our three test
cases we all within an order of magnitude of unity. To get a good first guess of λ, we try to equate
early values of the reconstruction loss with the path minimization loss. This procedure requires
minimal computation time and is allows for efficient hyperparameter searches.

Normalizing flow We train a normalizing flow to perform parameter inference on the predator-prey
using the flowjax library Ward [2024]. We train a neural autoregressive flow with a dataset of
10,000 trajectories with known parameters and initial conditions which are stored in an input vector x.
We vary the amount of points in the trajectory from 5 to 20 reporting results for the 5, 10, and 20 trials.
We also test on out-of-distribution samples. The full training implementation of the normalizing flow
involves taking the trajectories in observation space and then creating the latent context vectors u
with the trained latent ODE models for each implementation. The normalizing flow is trained to
predict the parameters x given u for each model. We run to 500 epochs with a learning rate of 2e− 3,
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the normalizing flow has a depth of 1. We report the best results for each model in the main contents
of this paper.

C Further results

C.1 Latent space structure in predator-prey system

We show additional UMAP projections of the latent space of both the baseline and our path-
minimizing models for the predator-prey system in Figure 5 and Figure 6. We show the parameters
with free initial conditions, meaning we randomly sample the ICs over the 10,000 trials used to create
the UMAP in all figures. This allows us to see that also the ICs are clearly located in latent space.
Some of the trends are a little less clear than in Figure 4 because now six variable parameters are
mapped onto two UMAP dimensions, but it is evident that the latents show sharper structures in our
model than in the baseline, which is the reason for the improvements in the inference results.
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Figure 5: Same as the bottom panel of Figure 4, except we also vary the initial conditions when
constructing the UMAP showing them in the two rightmost panels.

C.2 Encoder tests

We show sample results from a damped harmonic oscillator test for ODE-GRU and ODE-LSTM
encoder/decoder models in Figure 7 to show our loss modification works on arbitrary encoder/decoder
models.

ODE-LSTM ODE-LSTM (minpath) ODE-GRU ODE-GRU (minpath)

interp ⟨MSE⟩ 0.13± 0.04 0.14± 0.08 0.19± 0.06 0.09± 0.05
extrap ⟨MSE⟩ 2.42± 3.5 0.34± 0.21 9.51± 10 0.24± 0.19

Table 3: Averaged results for the alternate decoder tests. Similar to main paper we show the mean
square error for both the interpolation region, and the extrapolation region for all models averaged
over 50 trials.
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Figure 6: Same as Figure 5, but for the baseline model.

in training out of  training

in training out of  training

Figure 7: Tests on a simple harmonic oscillator system for GRU and LSTM encoder models in the left
and middle columns respectively. We show the standard models in the bottom row and our additional
loss term in the top. We see improved performance specifically in the extrapalatory regions (orange
shading) in models with the path-minimisation.
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