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Abstract

At high-energy collider experiments, generative models can be used for a wide
range of tasks, including fast detector simulations, unfolding, searches of physics
beyond the Standard Model, and inference tasks. In particular, it has been demon-
strated that score-based diffusion models can generate high-fidelity and accurate
samples of jets or collider events. This work expands on previous generative mod-
els in three distinct ways. First, our model is trained to generate entire collider
events, including all particle species with complete kinematic information. We
quantify how well the model learns event-wide constraints such as the conser-
vation of momentum and discrete quantum numbers. We focus on the events at
the future Electron-Ion Collider, but we expect that our results can be extended
to proton-proton and heavy-ion collisions. Second, previous generative models
often relied on image-based techniques. The sparsity of the data can negatively
affect the fidelity and sampling time of the model. We address these issues using
point clouds and a novel architecture combining edge creation with transformer
modules called Point Edge Transformers. Third, we adapt the foundation model
OmniLearn, to generate full collider events. This approach may indicate a transition
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toward adapting and fine-tuning foundation models for downstream tasks instead
of training new models from scratch.

1 Introduction

High-energy collider experiments enable probes of the internal dynamics of protons and nuclei, study
emergent phenomena such as hadronization, and search for physics beyond the Standard Model (BSM)
of particle physics. By analyzing the particles observed in detectors centered around the scattering
vertex, it is possible to infer the dynamics of particles at subatomic scales. The next-generation
experiment will be the future Electron-Ion Collider (EIC) [1], where high-luminosity electron-
proton/nucleus scattering will be studied at center-of-mass (CM) energies up to

√
s = 140 GeV.

A key tool to advance different areas of collider phenomenology are generative models, and can aid
in data deconvolution, searches for new physics, fast surrogate modeling, and much more [2]. Various
architectures have been trained to generate collider events or jets including GANs [3, 4], Variational
Autoencoders [5, 6], normalizing flows [7, 8, 9] and score-based diffusion models [10, 11, 12].
In particular, diffusion models have been demonstrated to produce high-fidelity samples and their
generation speed has been improved significantly using techniques such as progressive distillation [13].
Score-based diffusion models are based on slowly perturbing data over time using a time parameter t ∈
R that determines the perturbation level. The task of the neural network is to approximate the gradients
of the log probability of the data, log pdata(x), also called the score function ∇x log pdata(x) ∈ RD,
based on data observations x ∈ RD in D-dimensional space. This can be approximated by a denoising
score-matching strategy [14]. While denoising diffusion models were developed to work with images
[15, 16], the work in [17] demonstrated the advantages of using point-clouds over images for collider
physics applications. Point cloud based generative models for particle/nuclear physics applications
have seen rapid development in recent years [18, 19, 20, 21, 22].

In this work, we build upon these earlier results in the literature to develop a point cloud-based
diffusion model for full EIC event generation. The use of point clouds as well as a novel architecture
combining edge creation with transformer modules, termed Point Edge Transformers, allows us
to address several of the issues encountered in earlier work. We adapt the pre-existing foundation
model OMNILEARN [23] to generate full collider events. The model was initially developed for
both classification and generation tasks in the context of jet physics at the LHC, however we find
that the model is very well suited to generate EIC events. While the work in [12] used images and
generated only a small subset of the particle species in an event, this works generates point cloudes
for all particles in the event. While we train the model developed here from scratch instead of fine
tuning the original foundation model, the model architecture of OMNILEARN is not changed at all.
Our results therefore point toward a transition toward adapting foundation models for downstream
tasks at collider experiments.

2 Electron-Proton Data

Following Ref. [12], we generate events for electron-proton collisions using PYTHIA8 [24] at a
center-of-mass energy of

√
s = 105 GeV, with an electron and proton beam energy of 10 GeV

and 275 GeV, respectively. We avoid the low-Q2 photoproduction region by imposing a cut of
Q2 > 25 GeV2. We include all particles in the rapidity range |η| < 5 and we do not impose a lower
cut on the transverse momentum. We include the following list of stable particles, defined as particles
in the event with a lifetime cτ ≥ 10mm, in the data set.

e±, µ±, ν, ν̄, π±, π0,K±, p, n, γ. (1)
The data is categorized into event-level and particle level features, to support the two-model strategy
described in Sec. 3. Due to its relevance in Deep Inelastic Scattering (DIS), the modeling of the
scattered electron kinematics plays a critical role in electron-proton events that requires special
attention, and are therefore categorized as event-level features. Additionally, the total number of
particles in the event, N , of the event is used. The resulting set of event features is:

N, peT, η
e, ϕe. (2)

For each particle i in the event, we record its transverse momentum pTi, pseudo-rapidity ηi, azimuthal
angle ϕi, and Particle Identification (PID), and charge C. In addition, we consider the dimensionless
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quantity

zi =
2pTi√

s
cosh ηi , (3)

which is of particular interest for it’s relevance in testing momentum conservation. The particle level
features are normalized (or shifted) according to the scattered electron kinematics. This simplifies the
learning task of the second diffusion model to just learning the relative pT and η, for example, per
particle, rather than the absolute scale of each feature.

The set of generated particle features is:

log10(pT/p
e
T), η + ηe, ϕ, log10(z), C, PID. (4)

3 Model Architecture and Training

This work extends the generalized machine learning model, OMNILEARN [23], designed for analyzing
data from particle physics experiments. Fine-tuning on DIS events was attempted, but did not perform
well. This is likely because while the structure of OMNILEARN is well suited for whole event
generation, it was originally trained for a significantly different set of physics tasks - a variety of Jet
classification and recorstruction tasks in high-energy collisions. As a result, the model was re-trained
on electron-proton DIS events.

A high level schematic of the model architecture is shown in Fig1. In all metrics investigated, the
model shows similar or improved performance compared to previous models. The model processes
inputs consisting of particles and event-level information and incorporates a parameter related to the
diffusion time of these particles. The time information for the diffusion process, as done in previous
diffusion models for collider physics [10, 25, 26, 21, 27], is encoded to a higher dimensional space
using a time embedding layer. This embedding layer utilizes Fourier features [28] and is further
processed by two multi-layer perceptrons (MLPs) employing a GELU activation function [29]. In
this model, each MLP layer is followed by a non-linear GELU activation unless otherwise specified.
The model then integrates the time-related data with particle-specific information, which includes
both the kinematics of each particle and their particle identification (PID) code. These inputs are
transformed into a higher dimensional space using a feature embedding composed of two MLP
layers. The output from this embedding process is modified through a shift and scaling operation
to merge it with the time-related data. Prior to the transformer block – which is responsible for
processing data in a manner that considers the relationships between particles – we insert a positional
token. This token encodes the geometric context surrounding each particle in the event, aiding
the transformer in understanding local particle arrangements. Although transformers are capable
of capturing broad correlations among particles, adding local geometric data typically enhances
the model’s performance by creating a latent representation aware of particle distances [30]. The
local encoding is constructed using dynamic graph convolutional network (DGCNN) layers, which
define each particle’s neighborhood through a k-nearest neighbor algorithm, set to include precisely
ten neighbors. The distances between these neighbors are measured in the specific pseudorapidity-
azimuthal angle space. For each of the k-neighbors, edge features are defined by concatenating
the particle features with the subtraction between those features and the features of each respective
neighbor. These edge features are then processed by a multi-layer perception (MLP), followed by an
average pooling operation performed across the dimensions of the neighbors.

We adopt the two-model strategy implemented in [10]. A model is trained to exclusively learn the
kinematic information of the event, which is then utilized as conditional information for a diffusion
model that processes particles as inputs. Most important for this process is the total number of
particles in the event, N , which is learned by the first diffusion model. The multiplicity is then shared
with the second diffusion model that generates the corresponding number of particles for that event.

Up to 50 particles are saved per event to be used during training, the maximum of all pythia events in
the samples used. The training is carried out on the Perlmutter Supercomputer [31] using 128 GPUs
simultaneously with Horovod [32] package for data distributed training. A local batch size of size 256
is used with model training up to 200 epochs. OMNILEARN is implemented in TENSORFLOW [33]
with KERAS [34] backend. The cosine learning rate schedule [35] is used with an initial learning rate
of 3× 10−5, increasing to 3

√
128× 10−5 after three epochs and decreasing to 10−6 until the end of
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Figure 1: Left: Electron-proton scattering event e+ p → e′ +X . Right: Model architecture adapted
from the foundation model OmniLearn [23]. The final model is composed of two diffusion models:
One that generates the scattered electron and the event properties, such as the multiplicity (top), and a
second model that generates all other particles in the event with their kinematics (bottom)

the training. The LION optimizer [36] is used with parameters β1 = 0.95 and β2 = 0.99. The PET
body model has 1.3M trainable weights, while the generator head has 416k trainable parameters.

4 Results

Figure 2 shows the distributions for all particles generated by the OMNILEARN model, as well as the
original PYTHIA distribution. The diffusion model is extremely accurate, with only rare exceptions
of a handfull of bins deviating. Similar distributions for each particle flavor (Eq. 2 are omitted
for brevity, but are generated with very similar accuracy, with the exception of neutrinos that have
deviations above the 20% threshold shown in this work. This is a marked improvement over previous
image-based techniques for generating EIC events, where the center of the distributions had similar
accuracy as this work, but the tails of the distribution exhibited deviations on the order of 200% [12]

Figure 3 shows the DIS kinematics of the generated and pythia events, as well as the ratio of the two.
The plot shows log10 Q

2 vs. log10 x, both calculated using the beam energy and scattered electron
kinematics. The diffusion model generates these important DIS quantities extremely accurately as
well.

WP
1 (η) WP

1 (ϕ) WP
1 (pT ) Cov MMD KPD

e− 0.266± 0.009 0.015± 0.004 0.251± 0.004 0.546 0.166 0.0023± 0.0003
K 0.041± 0.003 0.025± 0.009 0.129± 0.005 0.518 0.382 0
π 0.310± 0.016 0.158± 0.003 0.464± 0.007 0.473 0.595 0.0062± 0.0009

Table 1: Comparison of the results obtained between generative model and pythia for the new
diffusion model. Small values are preferred for each of the metrics except coverage.

To better evaluate the improvements achieved in this work compared to the image-based diffusion
model from Ref. [12] for electron-proton scattering events, we present the values for several quanti-
tative metrics in Table 2. We only focus on the comparison for electrons, kaons, and pions, as the
image-based diffusion model in Ref. [12] was limited to these three particle species. Lower values of
the different metrics indicate better results except for the coverage, where higher values are preferred.
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Figure 2: The pT (left panel), η, (center left) and multiplicity (center right) of all particles is shown.
The red lines in each plot represent the generated distribution, while the shaded light blue regions are
the original PYTHIA8 distributions. The bottom panels of each distributions show the ratio of the
generated model to PYTHIA8. The width of the red bands represent the statistical uncertainty in each
bin. Lastly, comparison of the event-wide particle multiplicity distributions specific particle species
(right panel), electrons e−, pions π+, kaons K+, and muons µ− in shown.

Figure 3: DIS kinematics of the PYTHIA8 data (left panel), the generated data (mid panel) and the
ratio of the two (right panel). The DIS kinematics are calculated using the beam energy and scattered
electron information, which is used in training the diffusion models.

Image-based diffusion model, Ref. [12] Point cloud-based diffusion model (this work)
e− K+ π+ e− K+ π+

WP
1 (η) 63.167± 0.035 36.669± 0.029 57.887± 0.062 0.266± 0.009 0.041± 0.003 0.310± 0.016

WP
1 (ϕ) 18.910± 0.054 18.736± 0.048 18.789± 0.030 0.015± 0.004 0.025± 0.009 0.158± 0.003

WP
1 (pT ) 5.917± 0.005 0.323± 0.002 0.820± 0.007 0.251± 0.004 0.129± 0.005 0.464± 0.007
Cov 0.011 0.017 0.010 0.546 0.518 0.473

MMD 1.266 2.160 1.945 0.166 0.382 0.595
KPD 7× 107 ± 1× 107 20.576± 26.608 4.6× 103 ± 1.5× 103 0.0023± 0.0003 0 0.0062± 0.0009

Table 2: Metrics quantifying the performance of the image- and point cloud-based diffusion models
compared to PYTHIA8. Small values are preferred for each metric except for the coverage.

While some metrics show a more significant improvement than others, the point cloud-based model
presented here consistently outperforms the image-based diffusion model of Ref. [12]. This can be
attributed to both its more advanced architecture and the loss of granularity in the image-based model
due to pixelation.

5 Conclusion and Outlook

The diffusion models in OMNILEARN generate electron-proton collision as point clouds extremely
accurately. It correctly generates the correct number of each individual particle and it’s full kinematics,
outperforming previous image-based approaches. At the same time, event-wide characteristics, such
as the DIS kinematics, multiplicity, and momentum conservation are correctly learned.
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This work presents the first standalone results obtained from a foundation model designed for high
energy physics. No modifications to the model architecture were implemented, and simply a retraining
of the model on the data specific to this work was required. This points to the transition of machine
learning workflows in high energy physics from custom models designed for individual works, to
shared, collaborative foundation models such as OMNILEARN.
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