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Abstract

We examine the connection between deep learning and information theory through
the paradigm of diffusion models. Using well-established principles from non-
equilibrium thermodynamics we can characterize the amount of information re-
quired to reverse a diffusive process. Neural networks store this information and
operate in a manner reminiscent of Maxwell’s demon during the generative stage.
We illustrate this cycle using a novel diffusion scheme we call the entropy matching
model, wherein the information conveyed to the network during training exactly
corresponds to the entropy that must be negated during reversal. We demonstrate
that this entropy can be used to analyze the encoding efficiency and storage capacity
of the network, and raises the prospect of applying diffusion models as a test bench
to understand neural networks.

1 Introduction

In this paper we explore whether ideas from thermodynamics and information theory can be used to
understand the behavior of neural networks. Diffusion models serve as a natural bridge to draw the
connection between thermodynamics and machine learning, because they were originally developed
by synthesizing ideas from these disciplines [1]. Very briefly, samples from a training dataset are
incrementally noised till they are distributed as a generic Gaussian, while a neural network learns to
reverse these noising steps. Once trained, the network can transform a random Gaussian vector into a
highly structured output that resembles a typical member of the training data. In the continuum limit,
the noising and denoising stages become diffusive processes [2], the thermodynamic properties of
which are well established. A generative model based on the diffusion paradigm must also follow the
rules of thermodynamics, specifically the Second Law—to create structure out of noise in one part
of the system the model must either produce disorder elsewhere, or apply information to negate the
entropy like Maxwell’s demon. The latter is how diffusion models operate.

Diffusion gradually wipes out information from the system over time, but the process can be reversed
by reinstating the lost information. In a diffusion model the neural network stores this information.
Entropy is a measure of ‘missing information’, so the total entropy produced during the forward
process also quantifies the amount of information the network needs to remember and put back during
reversal (see Fig. 1). This is is what we refer to as neural entropy.

The entropic point of view can be demonstrated with a reparameterization of the reverse diffusion
process from the popular denoising score matching formulation [4]. We call this the entropy matching
model. The neural entropy of this model is the total dissipation in the forward diffusion process,
which has a lower bound related to the L2-Wasserstein distance between the initial data distribution
and the final Gaussian [5]. Thus we establish a fundamental connection between diffusion models
and the theory of optimal transport, opening up a new space of design choices for future diffusion
models. Furthermore, diffusion models are infinitely deep variational autoencoders [6], therefore
neural entropy offers a way to characterize a neural network’s performance as an encoder.
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Figure 1: Diffusion is a non-equilibrium process that generates entropy over time. On the left we
see snapshots of a diffusive process (Ornstein-Uhlenbeck). In the forward direction the distribution
evolves from 1 → 6, and entropy produced till that point in time is indicated on the right. In the
reverse direction, 6 → 1, a diffusion model removes this excess entropy using information it learned
during training. Note that Stot is the total entropy produced, which is different from the change in
Gibbs entropy of the distribution [3].

2 Entropy Matching

Consider the problem of converting a generic prior distribution p0 to a highly structured target
distribution pd. We would like to learn how to do this given only a set of samples yd ∼ pd. Diffusion
models accomplish this by applying a diffusive process on {yd} (see App. A for notation),

dY = b+(Y, s)ds+ σ(s)dB̂s, (1)

which distributes the samples as p0 after some time T . We will assume that b+ is a confining drift
term. Ideally, this process can be reversed with the SDE [7, 8]

dX = −b−(X,T − t)dt+ σ(T − t)dBt, (2)

where t = T − s, and the drift term is

b− = b+ − σ2∇ log
←
p . (3)

All the nontrivial information needed to transform p0 → pd is contained in the score function ∇ log
←
p ,

where the overhead arrow highlights that this object must be learned from the forward process, Eq. (1).
This is precisely what score matching models do, by approximating the scores with a neural network
sθ . Replacing b− with b+ − σ2sθ , it can be shown that the training objective for such models upper
bounds the KL divergence between the data distribution and the generated distribution pθ [9, 6],∫ T

0

dt
σ2

2
Ep

[
∥sθ −∇ log p∥2

]
≥ DKL (pd(·)∥pθ(·, T )) . (4)

Alternatively, if we substitute b− with −b+ − σ2eθ, where eθ represents a new neural network in
what we call the entropy matching model, we obtain the inequality∫ T

0

dt
σ2

2
Ep

[∥∥∥∥2b+σ2
−∇ log p+ eθ

∥∥∥∥2
]
≥ DKL (pd(·)∥pθ(·, T )) . (5)

If the network is disconnected, so that eθ = 0, the l.h.s. becomes the total entropy produced by the
forward process Eq. (1) in converting pd → p0 [10]. This is Stot from Fig. 1. This quantity has the
following physical interpretation: As diffusion progresses, our knowledge of the system diminishes
over time. Stot is a measure of this information loss. In entropy matching, the model records this
information in its network during training, so the content of the original distribution is not truly lost.
Then, we can recover this distribution by re-introducing the stored information back into the system.
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Figure 2: An idealized cycle of a diffusion model. During the forward process information lost as pd
transforms to p0 is captured by a neural network. This information is applied to lower the entropy of
the system and recover pd in the reverse process. The dashed arrow indicates the flow of information.

The entropy matching model allows us to identify precisely how much information is delivered to
the network during training. We may then associate the information in the network with the neural
entropy

SNN(T ) :=

∫ T

0

dt
1

2σ2
Ep

[∥∥2b+ − σ2∇ log p
∥∥2] . (6)

It is important to stress that SNN quantifies the maximum information stored in a perfectly trained
network; it is not the entropy of an internal phase space density over the neural network’s microstates.
In a diffusion model the network is configured as a memory, and it must be able to retain SNN/ log 2
bits of information. However, the storage capacity of the network is not simply the bit count of the
parameters of the network—depending on how the network encodes information, it works as an
effective memory that furnishes a functional bit count that is different from the sum of its parts.

Attempting to give an entropy interpretation to the bound in Eq. (4) will lead to physical inconsisten-
cies. For example, if we set sθ = 0 in Eq. (4), the l.h.s. will be a non-zero positive number even in
the special case pd = p0 where no information would be lost under diffusion. Therefore, the upper
bound in that equation cannot be interpreted as an entropy. A more rigorous justification for the
concept of neural entropy, based on the Vaikuntanathan-Jarzynski relation [11], is given in [12].

3 Experiments

A perfectly trained network absorbs and encodes SNN worth of information during the forward
process, and uses it to exhume pd from p0 during reversal (see Fig. 2). However, in practice not all
of SNN is retained by the network. A useful probe of network retention is the KL divergence from
Eq. (5)—we expect that a network that catches more information during training would reconstruct
a pθ that is closer to pd, compared to one that remembers less. We can test this hypothesis using
synthetic data for which the true pd is known.

Our experiments are designed to test how a neural network responds to different amounts of infor-
mation, as characterized by the neural entropy of an entropy matching model, Sem

NN. The latter is a
function of pd, p0, and the forward process, Eq. (1). We vary Sem

NN by changing pd, whilst keeping
p0, b+, and σ fixed. Our pd are Gaussian mixtures. These are low dimensional distributions, typically
D = 4 to 8, and our network is a simple MLP with Gaussian random feature layers for x and t [13].
The structure of the network is kept fixed in all the experiments, so its capacity to store information
is the same in all cases. The diffusion model is trained on data sampled from pd. These sample are
noised by a VP process [2], with βmin = 0.1 and βmax = 8. Then, we compute DKL(pd(·)∥pθ(·, T ))
on a new set of samples from pd. The main output of our experiments are plots of this KL against
Sem
NN (see Fig. 3). There is a clear deterioration in the network performance as we try to push more

information into it.
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Figure 3: Plots of the KL divergence between the data distribution pd(·) and the generated distribution
pθ(·, T ) against the neural entropy delivered in an entropy matching model. Each point corresponds to
a pd distribution associated with a different neural entropy. In this plot the pd’s are randomly generated
Gaussian mixtures in D dimensions. Lower values of the KL indicate better performance of the
diffusion model. Pushing more information into the neural network deteriorates model performance.

4 Conclusions

We have introduced the idea of neural entropy and demonstrated that, with entropy matching diffusion
models, it can be used to quantify the information delivered to a neural network. We can gauge the
network’s effectiveness at encoding and storing this information by how well it reconstructs the data
distribution. This paradigm serves as a test bench for neural network architectures, which may be
used to assess their performance against different kinds of data and training parameters. The main
paper [12] also makes several important conceptual connections, some of which are summarized
below:

Optimal transport: The entropy matching model establishes a link between diffusion models,
thermodynamics, and optimal transport, through the Benamou-Brenier formula [5]. It related the
entropy produced in a diffusive process with the L2-Wasserstein distance between p0 and pd [14].
For the diffusion process Eq. (1),

Stot ≥
W2(pd, p0)

2

2σ2T
, (7)

with the diffusion coefficient σ2 set to a constant. The main consequence of Eq. (7) is that, given the
same pd and p0, there exists some way of diffusing pd → p0 that incurs minimum entropy production.
In practice, we are limited to using forward processes with no drift or an affine drift term, which is
unlikely to saturate Eq. (7).

Maxwell’s demon: The operational cycle of a diffusion model (see Fig. 2) bears a strong likeness
to the famous thought experiment known as Maxwell’s demon [15]. In both cases information from a
prior measurement is used to alter the entropy of the system in a way that appears to defy the Second
Law of Thermodynamics. However, in the reverse diffusion case the information is applied via the
drift term, which means the ‘diffusion demon’ interacts with the diffusing particles.

Score matching: The difficulty with defining neural entropy for score matching models is demon-
strated with more detailed experiments in the main paper.
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A Notation

Notation: We use the time variable s for the forward diffusion process, which runs from right (s =

0) to left (s = T ) in Fig. 4. Sometimes we indicate functions of s as
←
f to remove ambiguity when the

same function is also expressed in terms of time variable t = T−s. That is,
←
f (s) =

←
f (T−t) = f(t).

B̂s and Bt denote the Brownian motions associated with the forward and reverse/controlled SDEs,
respectively. ∇ is the gradient with respect the spatial coordinates, and ∂t, ∂s are partial time
derivatives. Throughout the paper, we set Boltzmann’s constant to unity, kB = 1. log is the natural
logarithm. pd and p0 denote the initial (s = 0) and final (s = T ) densities for the forward process.
pθ(·, 0) and pθ(·, T ) are the initial (t = 0) and final (t = T ) densities of the generative process. In
this extended abstract we have taken pθ(·, 0) = p0(·) for simplicity.

p0(x)
or

p(x, 0)

x

Forward SDE
dYs=b+ds+σdB̂s

Reverse SDE
dXt=−b−dt+σdBt

pd(x)
or

p(x, T )

x

s

T 0

s

t

0 T

t

Figure 4: A schematic of the forward and reverse diffusion processes.

5



References
[1] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised learning

using nonequilibrium thermodynamics. In Francis Bach and David Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pages 2256–2265, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.press/
v37/sohl-dickstein15.html.

[2] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole.
Score-based generative modeling through stochastic differential equations. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=PxTIG12RRHS.

[3] Udo Seifert. Stochastic thermodynamics, fluctuation theorems and molecular machines. Reports on
Progress in Physics, 75(12):126001, nov 2012. doi: 10.1088/0034-4885/75/12/126001. URL https:
//dx.doi.org/10.1088/0034-4885/75/12/126001.

[4] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/
paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html.

[5] Jean-David Benamou and Yann Brenier. A computational fluid mechanics solution to the monge-
kantorovich mass transfer problem. Numerische Mathematik, 84(3):375–393, Jan 2000. ISSN 0945-3245.
doi: 10.1007/s002110050002. URL https://doi.org/10.1007/s002110050002.

[6] Chin-Wei Huang, Jae Hyun Lim, and Aaron C Courville. A variational perspective on diffusion-based
generative models and score matching. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan, editors, Advances in Neural Information Processing Systems, volume 34, pages
22863–22876. Curran Associates, Inc., 2021. URL https://proceedings.neurips.cc/paper_
files/paper/2021/file/c11abfd29e4d9b4d4b566b01114d8486-Paper.pdf.

[7] Edward Nelson. Derivation of the schrödinger equation from newtonian mechanics. Phys. Rev., 150:
1079–1085, Oct 1966. doi: 10.1103/PhysRev.150.1079. URL https://link.aps.org/doi/10.1103/
PhysRev.150.1079.

[8] Brian D.O. Anderson. Reverse-time diffusion equation models. Stochastic Processes and their Applications,
12(3):313–326, 1982. ISSN 0304-4149. doi: https://doi.org/10.1016/0304-4149(82)90051-5. URL
https://www.sciencedirect.com/science/article/pii/0304414982900515.

[9] Yang Song, Conor Durkan, Iain Murray, and Stefano Ermon. Maximum likelihood training of score-based
diffusion models. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan,
editors, Advances in Neural Information Processing Systems, volume 34, pages 1415–1428. Curran As-
sociates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/
0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf.

[10] Udo Seifert. Entropy production along a stochastic trajectory and an integral fluctuation theorem. Phys.
Rev. Lett., 95:040602, Jul 2005. doi: 10.1103/PhysRevLett.95.040602. URL https://link.aps.org/
doi/10.1103/PhysRevLett.95.040602.

[11] S. Vaikuntanathan and C. Jarzynski. Dissipation and lag in irreversible processes. Europhysics Letters,
87(6):60005, oct 2009. doi: 10.1209/0295-5075/87/60005. URL https://dx.doi.org/10.1209/
0295-5075/87/60005.

[12] Akhil Premkumar. Neural entropy, 2024. URL https://arxiv.org/abs/2409.03817.

[13] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara Fridovich-Keil, Nithin Raghavan, Utkarsh Sing-
hal, Ravi Ramamoorthi, Jonathan Barron, and Ren Ng. Fourier features let networks learn high frequency
functions in low dimensional domains. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33, pages 7537–7547. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
55053683268957697aa39fba6f231c68-Paper.pdf.

[14] Tan Van Vu and Keiji Saito. Thermodynamic unification of optimal transport: Thermodynamic uncertainty
relation, minimum dissipation, and thermodynamic speed limits. Phys. Rev. X, 13:011013, Feb 2023. doi:
10.1103/PhysRevX.13.011013. URL https://link.aps.org/doi/10.1103/PhysRevX.13.011013.

[15] J. C. Maxwell. Life and scientific work of peter guthrie tait. In C. G. Knott, editor, Life and Scientific Work
of Peter Guthrie Tait, page 213. Cambridge University Press, London, 1911.

6

https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://proceedings.mlr.press/v37/sohl-dickstein15.html
https://openreview.net/forum?id=PxTIG12RRHS
https://dx.doi.org/10.1088/0034-4885/75/12/126001
https://dx.doi.org/10.1088/0034-4885/75/12/126001
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://doi.org/10.1007/s002110050002
https://proceedings.neurips.cc/paper_files/paper/2021/file/c11abfd29e4d9b4d4b566b01114d8486-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/c11abfd29e4d9b4d4b566b01114d8486-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRev.150.1079
https://link.aps.org/doi/10.1103/PhysRev.150.1079
https://www.sciencedirect.com/science/article/pii/0304414982900515
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/0a9fdbb17feb6ccb7ec405cfb85222c4-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRevLett.95.040602
https://link.aps.org/doi/10.1103/PhysRevLett.95.040602
https://dx.doi.org/10.1209/0295-5075/87/60005
https://dx.doi.org/10.1209/0295-5075/87/60005
https://arxiv.org/abs/2409.03817
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/55053683268957697aa39fba6f231c68-Paper.pdf
https://link.aps.org/doi/10.1103/PhysRevX.13.011013

	Introduction
	Entropy Matching
	Experiments
	Conclusions
	Notation
	References

