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Abstract

To support climate change research and its communication to the public, we
propose Climate Projection and Analysis with Language models (Climate PAL).
Our system allows users to retrieve and analyze climate projection data through
conversational English. Using a crowdsourced evaluation dataset, we demonstrate
that Climate PAL’s retrieved data are more relevant to user queries, with over 20%
higher accuracy than baselines on several key metrics.

1 Introduction

Climate change research relies on staggering quantities of data. A prominent example is the 30-
petabyte Coupled Model Intercomparison Project (CMIP) 6, which contains over 13,600,000 climate
projection datasets [8]. Working with CMIP6 requires a range of technical knowledge, such as
using specialized programming packages or understanding esoteric terms and abbreviations. These
requirements pose challenges for less-experienced researchers, impede experts’ ability to quickly
evaluate new hypotheses, and deter non-technical stakeholders from engaging with climate data.

Figure 1: Climate PAL allows users to engage with
CMIP6 climate data via conversational English
through an intuitive graphical interface.

To address these issues, we present Climate
Projection and Analysis with Language
models (Climate PAL), a Large Language
Model-based system to retrieve and analyze
343,119 CMIP6 datasets generated by NASA’s
Goddard Institute for Space Studies (GISS) us-
ing conversational English. Climate PAL will
assist researchers and increase the accessibility
of climate insights to the general public.

Climate PAL is, to our knowledge, the first
general-use conversational system for retrieval
and analysis of CMIP6 climate data. The inter-
face is designed to be simple, intuitive and easily
adaptable to a variety of device resources and
screen sizes. Figure 1 demonstrates an interac-
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Figure 2: An overview of Climate PAL. The Retrieval Component is tasked with selecting datasets to
provide to the Analysis Component, based on the user query and conversational history.

tion with Climate PAL. By relying on In-Context Learning (ICL) techniques [17], our system requires
no fine-tuning and will allow for easy incorporation of new CMIP datasets as they are released. We
summarize our contributions as follows:
• We propose Climate PAL for retrieval and analysis of CMIP6 datasets using conversational English.
• We crowdsource a dataset of CMIP6 analysis queries to evaluate Climate PAL and future systems.
• We demonstrate retrieved datasets are > 20% more accurate than baselines in several metrics.

2 Method

To motivate the design of Climate PAL, we provide additional information about the structure of
GISS CMIP6. Next, we discuss each component of Climate PAL as summarized in Figure 2. Further
details on Climate PAL’s architecture are in Appendix A.

GISS CMIP61 contains the evaluation data and outputs of six climate models. Its 343,119 datasets
simulate more than 400 different variables over 90,000 years of the Earth’s past and future climate.
CMIP6’s modeling tasks are referred to as Model Intercomparison Projects (MIPs), each of which
contain different sub-tasks, called Experiments.

Each CMIP6 dataset is described by a standardized set of attributes, which we refer to as descriptors.
These descriptors include Variable (the dependent variable measured), Start and End Year (the range
of years covered) and Temporal Resolution (whether Variable is measured hourly, monthly or yearly
between Start and End Year), along with the MIP and Experiment to which the dataset belongs.

Climate PAL’s Retrieval Component is responsible for selecting a dataset best-suited to answering
the user query. Each time the user replies in a conversation, a GPT model [4, 18] is prompted to
summarize the query and any conversational history into a few keywords, then determine if it is
necessary to retrieve a new dataset to answer the query. If so, the retrieval component first builds a
profile of an ideal dataset by predicting each of the dataset’s descriptors. Next, a table of each GISS
CMIP6 dataset is filtered to find the best match to the predicted descriptors.

Apart from Variable, each descriptor is predicted by prompting GPT with the conversational summary,
plus information such as which descriptor to predict and the descriptor’s set of possible values.
Variable, however, is more challenging: there are 419 unique Variables in GISS CMIP6, each with a
precise, technical definition. We use a three-step technique to predict Variable by further summarizing
the conversation, then performing an embeddings-based search to find the top ten closest matches to
the summary and providing this shortlist in an ICL GPT prompt similar to the other descriptors’.

The descriptor predictions form the profile of an ideal dataset for retrieval, but a dataset with this
specific combination of descriptors may not exist in CMIP6. We filter all datasets by each descriptor’s
prediction sequentially, skipping descriptors that cannot be satisfied due to previous descriptor values.

The Analysis Component instantiates an OpenAI “Assistant" GPT model with the proprietary
Code Interpreter Tool [1], allowing GPT to execute code for tasks such as data visualization and
mathematical computations. This GPT agent is prompted with the full conversational history and all
retrieved datasets, allowing the model to generate an informed response to the conversation using
Retrieval-Augmented Generation (RAG) techniques [13].

1https://portal.nccs.nasa.gov/datashare/giss_cmip6/
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CMIP6 datasets are stored in the specialized geospatial NetCDF format [19], which GPT cannot
natively interpret. We use a specialized ICL prompt instructing GPT to install xarray [11], the Python
library for interacting with NetCDF files.

3 Evaluation

We describe our crowdsourced evaluation dataset, then present our experimental setup.

Evaluation Dataset: We crowdsource a set of 35 GISS CMIP6-related queries from NASA scientists.
Then, we manually annotate each query with the set of descriptor values necessary to the retrieved
dataset. We perform semantic variation to augment our evaluation dataset to a full set of 210 queries.
For further details and example queries, see Appendix B. We are in the process of gaining the rights
to release our evaluation dataset publicly.

Setup: We evaluate Climate PAL retrievals in two phases. As described in Section 2, we first
predict the values of each descriptor. We begin by assessing the accuracy of these predictions in
Section 3.1. Next, in Section 3.2, we discuss the accuracy of the dataset that is ultimately retrieved.
In all experiments, we include Climate PAL with both GPT-4o and GPT-3.5, which we refer to as
Climate PAL-4o and Climate PAL-3.5. Furthermore, all experimental results are averaged across
three runs for any non-deterministic approach. We focus here on the evaluation of dataset retrievals,
with plans to evaluate the analysis component outlined in Appendix C.

3.1 Descriptor Prediction

Baselines: We compare Climate PAL’s Variable predictions against two baselines: one embeddings-
based and the other a simple Retrieval-Augmented Generation (RAG) pipeline [13] with GPT-3.5.
The remaining descriptors use keyword and regular expression-based baselines. For instance, the
Temporal Resolution baseline predicts “hour" if the query text contains “hr" or “hour". Refer to
Appendix C for more details.

Results: In Variable prediction, Climate PAL-4o is 29.7% more accurate on average than the best-
performing baseline. The RAG baseline using GPT-3.5 without Climate PAL reaches only 8.6%
accuracy. Though RAG-3.5 and Climate PAL-3.5 rely on the same GPT-3.5 model, the very low
performance of RAG-3.5 demonstrates the importance of Climate PAL’s Variable selection approach.

Climate PAL-4o exceeds the baseline by significant margins on all descriptors except Experiment,
while Climate PAL-3.5 achieves the second-best performance for all descriptors. The keyword
baselines perform worse than uniform random guessing on Temporal Resolution, which takes four
unique values, and MIP, which takes three unique values. Results are summarized in Table 1.

3.2 Dataset Selection

Baselines: We implement three baselines for this task.

Two baselines are combinations of the descriptor prediction baselines introduced in Section 3.1,
along with Climate PAL’s process of using these predictions to select the retrieved dataset. The first
baseline, called E+K, uses the embedding approach to predict the Variable. The second, called 3.5+K,
predicts Variable using the GPT-3.5 RAG baseline. These baselines both rely on the keyword-based
approaches to predicting Start/End Year, Temporal Resolution, MIP and Experiment.

The third baseline, called 3.5, is a single-step RAG approach. We provide GPT-3.5 with a table of all
343,119 GISS CMIP6 datasets and prompt the model to choose a dataset appropriate to the query.

Results: Table 2 compares the accuracy of the dataset selection methods. Climate PAL-4o and
Climate PAL-3.5 are more accurate in the Variable descriptor than all baselines, by large margins.

Start and End Year see lower performance. The 3.5 baseline achieves the highest accuracy, at 62.7%.
While this baseline chooses its dataset in one step, the other methods are constrained by their choice
of Variable before attempting to select their predicted Start Year. When the predicted combination of
Variable and Start Year does not exist in the GISS CMIP6 datasets, Climate PAL, 3.5+K and E+K opt
for their predicted Variable instead of their predicted Start Year. We refer to this effect of degraded
performance due to constraints from prior descriptors as prior descriptor limitation.
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Table 1: Descriptor prediction accuracy. Climate PAL (denoted CP) outperforms baselines on all
descriptors except Experiment. Baselines are keyword-based (Keywords) except for Variable, which
has an embeddings-based (Embeds) and RAG (3.5) baselines.

Variable Year Temporal
Resolution MIP Experiment

CP 4o
(Ours) 66.7± 3.3

CP 4o
(Ours) 94.6± 0.1 83.8± 0.8 88.6± 1.3 57.1± 1.7

CP 3.5
(Ours) 62.9± 4.9

CP 3.5
(Ours) 86.0± 0.5 68.3± 0.5 57.8± 0.3 62.1± 0.5

Embeds
3.5

36.2± 1.6
08.6± 0.0

Keywords 64.3 12.9 14.3 63.3

Table 2: Accuracy of retrieved dataset. Climate PAL (denoted CP) achieves top performance on 4/6
descriptors. Baselines are, in order: keywords with embedding-based or RAG Variable prediction
and a single-step RAG dataset selection approach.

Variable Start
Year

End
Year

Temporal
Resolution MIP Experiment

CP 4o
(Ours) 65.4± 1.0 26.7± 0.5 30.6± 0.7 80.0± 0.5 94.0± 0.3 77.9± 0.7

CP 3.5
(Ours) 61.0± 0.5 31.9± 1.0 38.6± 0.0 67.0± 0.3 91.7± 0.3 86.0± 0.7

E+K 8.6± 0.0 0.0± 0.0 5.7± 0.0 77.1± 0.0 42.9± 0.0 40.0± 0.0
3.5+K 35.7± 0.5 16.0± 0.3 35.1± 0.3 81.3± 0.3 74.6± 0.3 67.9± 0.3
3.5 11.4± 0.0 62.7± 0.3 37.0± 0.3 32.9± 0.0 85.6± 0.3 69.5± 0.0

Despite its freedom from prior descriptor limitation, the 3.5 baseline struggles at selecting relevant
datasets. In fact, this method sees the second-lowest accuracy for the Variable descriptor, and is
outperformed by Climate PAL-3.5 or Climate PAL-4o in all descriptors but Start Year.

We see the effect of prior descriptor limitation even more clearly in Temporal Resolution. As
presented in Section 3.1, the keyword baseline for predicting Temporal Resolution achieved only
12.9% accuracy (worse than random guessing), versus 83.8% and 68.3% for Climate PAL-4o and
Climate PAL-3.5. Despite the low performance of the keyword Temporal Resolution predictions,
which are used identically by both E+K and 3.5+K, we see that datasets selected by E+K and 3.5+K
perform similarly to datasets selected by Climate PAL on the accuracy of Temporal Resolution.

Due to the prior descriptor limitation effect, we find a need to adjust assessments of Climate PAL,
E+K and 3.5+K’s retrieved datasets’ descriptors on the basis of how limited each method is by its
prior descriptor choices. The design of a clearer metric for evaluating the retrieved datasets is a
priority for future research. Despite these challenges, the competitive performance of Climate PAL is
demonstrated in its high Variable accuracy, along with its highest or near-highest accuracy on four
of the five other descriptors: End Year, Temporal Resolution, MIP and Experiment.

4 Related Work

Information retrieval has been a focus of AI for decades [20], with several recent approaches relying
on Large Language Models (LLMs) [15, 21, 9]. RAG is a related task, where the LLM accesses
an external knowledge base to better-inform its outputs [13, 14]. However, many of these works
are focused on retrievals from natural-language datasets, as opposed to specialized modalities such
as geospatial data. Two exceptions are Chen et al. [6] and Zhang et al. [22], which are for road
design and satellite control respectively. Unfortunately, such works are highly fitted to their specific
applications and offer no clear method for adaptation to CMIP6.

LLM researchers have given much attention lately to the task of automated data analysis [16, 10],
with the GPT Data Analysis tool [2] particularly relevant to these efforts. Similar to the problem of
RAG, however, these works have primarily focused on domains such as natural language and pure
mathematics. In-Context Learning (ICL) is also a popular topic of LLM research [17, 7], allowing

4



LLMs to perform novel tasks by following instructions in a text prompt instead of undergoing further
training/finetuning.

5 Conclusion

We present Climate PAL, a system for the retrieval and analysis of CMIP6 data using conversational
English. We hope Climate PAL will be useful for accelerating climate research, and providing greater
exposure of this field to the general public.

Acknowledgements

We are grateful to the NASA Office of STEM Engagement (OSTEM) for their support of Sonia
Cromp and Behrad Rabiei, who completed this work during internships at the NASA Goddard
Institute for Space Studies. We additionally thank Ellen Salmon and the NASA Center for Climate
Simulation staff for hosting and providing convenient access to the GISS CMIP6 model output2.

References
[1] Openai platform. URL https://platform.openai.com.

[2] Improvements to data analysis in chatgpt. URL https://openai.com/index/
improvements-to-data-analysis-in-chatgpt/.

[3] New embedding models and api updates. URL https://openai.com/index/
new-embedding-models-and-api-updates/.

[4] J. Achiam, S. Adler, S. Agarwal, L. Ahmad, I. Akkaya, F. L. Aleman, D. Almeida,
J. Altenschmidt, S. Altman, S. Anadkat, et al. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774, 2023.

[5] I. Beltagy, K. Lo, and A. Cohan. Scibert: A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676, 2019.

[6] J. Chen, W. Xu, H. Cao, Z. Xu, Y. Zhang, Z. Zhang, and S. Zhang. Multimodal road network
generation based on large language model. arXiv preprint arXiv:2404.06227, 2024.

[7] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, and Z. Sui. A survey on
in-context learning. arXiv preprint arXiv:2301.00234, 2022.

[8] V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer, and K. E. Taylor.
Overview of the coupled model intercomparison project phase 6 (cmip6) experimental design
and organization. Geoscientific Model Development, 9(5):1937–1958, 2016.

[9] J. Gavilanes, Y. Bozhilov, U. Dodeja, G. Valtas, and A. Badrajan. Use of llm for methods of
information retrieval.

[10] S. Hong, Y. Lin, B. Liu, B. Wu, D. Li, J. Chen, J. Zhang, J. Wang, L. Zhang, M. Zhuge, et al.
Data interpreter: An llm agent for data science. arXiv preprint arXiv:2402.18679, 2024.

[11] S. Hoyer and J. Hamman. xarray: Nd labeled arrays and datasets in python. Journal of Open
Research Software, 5(1):10–10, 2017.

[12] M. Khorasani, M. Abdou, and J. H. Fernández. Web application development with streamlit.
Software Development, pages 498–507, 2022.

[13] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal, H. Küttler, M. Lewis, W.-t.
Yih, T. Rocktäschel, et al. Retrieval-augmented generation for knowledge-intensive nlp tasks.
Advances in Neural Information Processing Systems, 33:9459–9474, 2020.

[14] H. Li, Y. Su, D. Cai, Y. Wang, and L. Liu. A survey on retrieval-augmented text generation.
arXiv preprint arXiv:2202.01110, 2022.

2https://portal.nccs.nasa.gov/datashare/giss_cmip6/

5

https://platform.openai.com
https://openai.com/index/improvements-to-data-analysis-in-chatgpt/
https://openai.com/index/improvements-to-data-analysis-in-chatgpt/
https://openai.com/index/new-embedding-models-and-api-updates/
https://openai.com/index/new-embedding-models-and-api-updates/


[15] Z. Liu, Y. Zhou, Y. Zhu, J. Lian, C. Li, Z. Dou, D. Lian, and J.-Y. Nie. Information retrieval
meets large language models. In Companion Proceedings of the ACM on Web Conference 2024,
pages 1586–1589, 2024.

[16] P. Ma, R. Ding, S. Wang, S. Han, and D. Zhang. Demonstration of insightpilot: An llm-
empowered automated data exploration system. arXiv preprint arXiv:2304.00477, 2023.

[17] S. Min, X. Lyu, A. Holtzman, M. Artetxe, M. Lewis, H. Hajishirzi, and L. Zettlemoyer.
Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837, 2022.

[18] OpenAI. Introducing chatgpt. URL https://openai.com/index/chatgpt/.

[19] R. Rew and G. Davis. Netcdf: an interface for scientific data access. IEEE computer graphics
and applications, 10(4):76–82, 1990.

[20] A. Singhal et al. Modern information retrieval: A brief overview. IEEE Data Eng. Bull., 24(4):
35–43, 2001.

[21] C. Zhai. Large language models and future of information retrieval: Opportunities and chal-
lenges. In Proceedings of the 47th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 481–490, 2024.

[22] R. Zhang, H. Du, Y. Liu, D. Niyato, J. Kang, Z. Xiong, A. Jamalipour, and D. I. Kim. Interactive
generative ai agents for satellite networks through a mixture of experts transmission. arXiv
preprint arXiv:2404.09134, 2024.

6

https://openai.com/index/chatgpt/


A Further Methodological Details

A.1 Retrieval Component

We provide additional information on the design of each descriptor predictor.

Variable: The Variable predictor selects the most relevant Variable from a set of 419 possible values.
Examples of possible Variables include “tasmax", the maximum air temperature at the Earth’s surface,
and “sithick", the average thickness of sea ice. Climate PAL has access to a short, natural-language
description of each variable. These descriptions are publicly available online3.

To select a Variable, Climate PAL employs a three-step process:

1. Although Climate PAL initially creates a general-purpose summary of the user’s query,
this summary might contain analysis-related words like “plot", or words relevant to other
descriptors, such as year ranges. To help the Variable predictor focus on Variable-relevant
information, we prompt GPT to write a description specifically of a CMIP6 Variable relevant
to the conversational summary.

2. Each Variable’s description and the description produced in step (1) are embedded using
OpenAI’s text-3-embedding-large model [3]. We determine the set of 10 Variables with
descriptions of smallest cosine distance to the step (1) description.

3. This shortlist is provided in a second call to GPT, along with the original user query and an
ICL prompt to choose the Variable from the list that is most relevant to answering the query.

Other descriptors: All of the remaining descriptors follow a similar format to each other: a GPT
model is provided with the conversational summary, as well as an ICL prompt. Each of these ICL
prompts is listed in Table 3.

A.2 Analysis

In order to create a GPT Assistant using the OpenAI Assistant API, we must provide a client and our
retrieved CMIP6 datasets. The client handles HTTP requests, manages API authentication, processes
user input, and integrates responses into the application. The client should manage conversation
context, handle errors, and allow customization of API parameters.

With all necessary sub-components set up, each time a user provides a new analysis query, the
Analysis Component will append the query to the conversational history and feed this history into the
Assistant. The Assistant then generates code to perform analysis using the Code Interpreter Tool and
displays the results to the user through our custom graphical interface.

This process repeats until the user is satisfied or a new dataset must be retrieved. Each time that a new
dataset is added to the conversation, a dataset summary is created and displayed to the user, including
information such as the dataset name, size and features.

A.3 Graphical User Interface

To abstract away the underlying components of Climate PAL, we have created a custom user interface
using the Streamlit library [12], a Python library that allows developers to quickly create and share
custom web apps. The interface mimics a conversational text message format. See Figure 1 for an
example of the interface.

3https://github.com/PCMDI/cmip6-cmor-tables/tree/main
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Table 3: The ICL prompts used by Climate PAL’s Retrieval Component, edited slightly for brevity.

Descriptor ICL Prompt
Variable (1) You are a climate scientist and expert on CMIP6. Given a colleague’s

query, describe what CMIP6 variable you would use to answer the query.
For instance, you might want a rainfall-related variable for questions
about drought. For a query about days below freezing, you might want a
variable describing minimum temperature instead of average temperature.
Formulate your response as a detailed list of keywords. Be specific
because a lot of CMIP6 variables are very similar but there is only one
correct answer to these queries.

Variable (2) RETURN A ONE-WORD RESPONSE: You are an expert climate scien-
tist working with the CMIP6. Following, is a colleague’s climate analysis
query and a list of 10 CMIP6 variables with their descriptions. From these
10 variables, choose the variable best-suited to answer the colleague’s
query. Return ONLY the variable’s name and nothing else. For instance,
return ’tas’, or ’zostoga’, or ’sithick’ alone, no explanation, no alternative
answer, nothing else.

Start/End Year You are an expert climate scientist. Does the following CMIP6 query
require or specify a year range for the data required to answer the query?
If yes, provide the year range in format START-END, for instance 1960-
1970 or 2100-3100. If no, respond NA-NA. If only the start or end is
specified, provide just that year in format START-NA (eg 2100-NA) or
NA-END (eg NA-1900). Provide only the year range in this format and
nothing else.

Temporal Resolution You are an expert climate scientist. Is the following CMIP6-related query
best answered using data gathered at which of the following resolutions?
A. hour B. day C. month D. not applicable, none of the above, or unclear
Respond with only the one letter corresponding to your choice and nothing
else. If a query does not specify any given temporal resolution, like the
query "plot average temperature", then choose option D.

MIP You are an expert climate scientist working with CMIP6. Here is a list of
the MIPs you work with: CMIP, ScenarioMIP To answer the following
query, which of the above experiments would you use? Return JUST the
name of the experiment and nothing else. If the choice of experimentdoes
not matter, return ’None’.

Experiment You are an expert climate scientist working with CMIP6. Here is a list of
the experiments you work with: To answer the following query, which
of the above experiments would you use? Return JUST the name of the
experiment and nothing else. If the choice of experimentdoes not matter,
return ’None’.

B Evaluation Dataset

We provide a small sample of our crowdsourced evaluation dataset in Table 4. Each query is a
standalone question to be answered by Climate PAL, rather than a multi-turn conversation that
must first be summarized. These single-turn queries are easier to crowdsource from volunteers than
multi-turn conversations. Despite this, we still pass each query through the retrieval component’s
conversational summarization step in order to shorten the query and allow for greater similarity to
Climate PAL’s intended use-case of multi-turn conversations.

After manually annotating each of the 35 queries, we perform semantic variation to augment our
evaluation dataset. For each query, we ask GPT-4o to rephrase the query five different ways for a
total of set of 210 queries (35 original plus 175 augmented). As such, the manual annotations for
each original crowdsourced query can be used for the semantic variation queries as well.

We use this semantic variation method to augment our dataset because of its simplicity, and also
because of the quality of the generated queries as measured by cosine distance. We refer to the original,
crowdsourced queries as “parents" and their rephrased queries as “children". As demonstrated by

8



the plots of SciBERT [5] and OpenAI embedding cosine distances between each child query and its
parent in Figures 3 and 4, the augmented queries have small– but non-zero– distances to their parent
query. As a result, the augmented queries tend to have similar meanings to the crowdsourced queries,
without being identical.

To help foster future research in this area and a culture of reproducibility, we are currently in the
process of gaining the rights to release our evaluation dataset publicly.

Table 4: Example queries in the evaluation dataset.

Query Variable Start
Year

End
Year

Temporal
Resolution MIP Experiment

Are there going to be increased
heatwaves in South America
under SSP370 for 2085?

tasmax 2085 2085 day ScenarioMIP ssp370

Show me in the future, all
the suitable places that wheat
could grow

clt, pr, etc 2025 ScenarioMIP

Show me the expected average
winter ice coverage for Lake
Ontario is 2050?

sblIs, sftgif 2050 2050 month ScenarioMIP

Plot the change in cloud cover
from 1930 to 2015 clt 1930 2015 month CMIP historical

What are the projected changes
in global ocean salinity by 2050
under SSP126?

so 2025 2050 month ScenarioMIP ssp126

Figure 3: A comparison of child queries’ em-
bedding cosine distances to their parents’ em-
beddings, using SciBERT [5] or OpenAI’s
text-3-embedding-large model. Each color
corresponds to one parent query. We observe
that distances produced by the OpenAI em-
beddings are generally closer to 1 than the
SciBERT embedding distances.

Figure 4: The distributions of cosine dis-
tances between child and parent queries, us-
ing SciBERT or OpenAI’s text-3-embedding-
large model. The range of distances for Ope-
nAI (right) are closer to 1, despite a lower
average distance than SciBERT embeddings.
The SciBERT distribution exhibits a longer
tail of lower-similarity embeddings as well.

C Evaluation

C.1 Retrieval Evaluation

For the Variable, Temporal Resolution, MIP and Experiment descriptors, accuracy is calculated as
the percentage of queries for which the descriptor prediction or the retrieved dataset matches the
descriptor’s gold label. As the Variable descriptor may be annotated to have multiple acceptable
values on a given query, a prediction or retrieved dataset is considered to be accurate if the Variable
equals to any of the manually-annotated Variables. For the Year descriptor, 50% accuracy is awarded
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for a correct start- or end-year prediction, while 100% accuracy is awarded for correct start- and
end-year predictions.

We implement two Variable prediction baselines for the descriptor prediction evaluation in Section 3.1.
The first is embedding-based: we use OpenAI’s text-3-embedding-large model to embed the natural-
language descriptions of the 419 Variables, as well as the conversational summary for each evaluation
query. A variable with an embedded description of minimum cosine distance to the embedded
conversational summary is chosen as this baseline’s description. Our second Variable baseline is a
simple RAG pipeline: we provide GPT 3.5 with a table of all 419 variables and their natural-language
descriptions, along with an ICL prompt to return the variable best-suited to answer the evaluation
query.

C.2 Analysis Evaluation

To evaluate the effectiveness of the analysis component in Climate PAL, we will conduct a series of
assessments. Please note that we are still in the process of conducting these evaluations and currently
do not have any results to report.

Variable Identification: The first evaluation focuses on the Analysis Components’s ability to
correctly interpret datasets recieved from the Retrieval Component. In particular, we assess the
Analysis Component’s ability to identify descriptors of a dataset retrieved in response to a user query.
This evaluation will be performed using the same evaluations dataset introduced in Section 3. The
performance of our method will be compared across GPT-4o, GPT-3.5, and the standard ChatGPT
interface [1]. We will use accuracy as our principal performance metric for each descriptor, in a
similar fashion to evaluation of the Retrieval Component.

Plot Generation Capability: This evaluation measures the component’s capability to generate a
plot when appropriate, regardless of the plot’s correctness. For each crowdsourced query in our
evaluations dataset, we will manually annotate the query with a 1 if the query’s response should
produce a plot, and with 0 otherwise. Performance will be evaluated using accuracy.

User Satisfaction: The final evaluation is a user study. We will assess user satisfaction with Climate
PAL’s responses to a fixed set of n queries for U participants. This evaluation will involve a diverse
group of users, from novices to experts, who will use the system and provide satisfaction ratings on a
scale from 1 to 5. The metric for this evaluation will be the average satisfaction score, calculated as:

Average_Score =
1

n

n∑
q=1

∑U
u=1 satisfaction(q, u)

U
,

where n is the total number of queries and satisfaction(q, u) is the satisfaction of the u-th user on
Climate PAL’s response to the q-th query.
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