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Abstract

Deep operator networks (DeepONet) and neural operators have gained significant
attention for their ability to map infinite-dimensional function spaces and perform
zero-shot super-resolution. However, these models often require large datasets for
effective training. While physics-informed operators offer a data-agnostic learning
approach, they introduce additional training complexities and convergence issues,
especially in highly nonlinear systems. To overcome these challenges, we intro-
duce Finite-Basis Physics-Informed HyperDeepONet (FB-HyDON), an advanced
DeepONet-based operator architecture featuring intrinsic domain decomposition.
By leveraging hypernetworks and finite-basis functions, FB-HyDON effectively
mitigates the training limitations associated with existing physics-informed op-
erators. We evaluated our approach on various benchmark problems including
the high-frequency harmonic oscillator, Burgers’ and Allen-Cahn equations. The
results demonstrate substantial improvements over DeepONet and its variants, and
exhibit comparable performance against the Fourier neural operator.

1 Introduction

Partial differential equations (PDEs) are integral in modeling and describing the dynamics of many
complex systems in science and engineering applications. Numerical solvers such as finite element
methods (FEMs) and finite difference methods (FDMs) often obtain the solution of PDEs by dis-
cretizing the domain and solving a finite-dimensional problem. However, obtaining high-resolution
solutions to PDEs using numerical simulations for complex large-scale problems can be computa-
tionally expensive and prohibitive. There has been a growing interest in more efficient data-driven
alternatives that can directly learn the underlying solutions from the available data without requiring
explicit knowledge about the governing PDEs [1, 2]. More recently, operator learning has emerged as
a promising paradigm, aiming to learn an unknown mathematical operator governing a system of
PDEs [3]. They capture mappings between infinite-dimensional function spaces and have demon-
strated potential in capturing complex solution behaviors [4, 5]. Furthermore, due to their inherent
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differentiability, they can be seamlessly applied to inverse problems, such as design optimization tasks
[6]. Various architectures have been developed, including the Deep Neural Operator (DeepONet) [4],
Fourier Neural Operator (FNO) [5], Graph Neural Operator [7], General Neural Operator Transformer
(GNOT) [8] and Operator Transformer (OFormer) [9]. These models differ in their discretization
methods and the approximation techniques they use to enhance efficiency and scalability.

Training the operators, however, relies on large datasets, which may not be readily available for
many practical applications and can result in suboptimal generalization performance. One way to
reduce (or eliminate) the operators’ data dependency is to augment the training process with physical
laws and learn the operator in a physics-informed fashion [10, 11, 12]. Despite their advantages,
such physics-informed models often face challenges related to complex optimization landscapes
and convergence difficulties, hindering their effectiveness [13]. In this paper, we introduce a novel
operator-learning architecture designed to overcome the aforementioned limitations. We present
Finite-Basis Physics-Informed HyperDeepONet (FB-HyDON), which efficiently and accurately
learns the solution operator for complex, highly nonlinear, and high-frequency problems. The primary
contributions of this study are as follows: 1) We propose FB-HyDON, an advanced DeepONet-based
operator architecture with built-in domain decomposition functionality that effectively addresses
the training limitations of existing physics-informed operators; 2) We introduce a hypernetwork-
based variant of finite basis domain decomposition method [14] which facilitates learning complex
PDE systems in a more parameter-efficient manner and maintains a constant number of trainable
parameters for any domain decomposition, from coarse to fine; 3) We conduct a comparative analysis
of FB-HyDON against various operator models, demonstrating that our model consistently achieves
superior results while incorporating only a fraction of the model complexity needed in other operators.

2 Background

Operator learning. Considering a parametric PDE taking the form N (u, a) = 0 where u ∈ U
is the unknown solution, a ∈ A ⊆ V is a PDE parameter and N : U × A → F is a linear or
nonlinear partial differential operator with U ,V,F representing a triplet of Banach spaces. Given
suitable initial and boundary conditions, for any a ∈ A, we assume that there is a unique solution
u = u(a) to the problem. This formulation results in the solution operator G : A → U . The solution
operator G can be approximated by an operator Gθ with parameters θ [11]. Specifically in DeepONet’s
architecture, Gθ comprises a branch net and a trunk net. The branch net encodes the input function
information at discrete sensor points and the trunk net embeds the spatiotemporal coordinates of
the PDE system. The networks’ outputs are then merged through an element-wise multiplication
followed by a summation to generate the PDE solution Gθ(a)(y) [4] (more details in B.1).

HyperDeepONet. Since DeepONet approximates the target functions with a finite-dimensional linear
subspace, it struggles to accurately learn complex functions with nonlinear and sharp features [15].
Various works have been proposed to address this limitation [15, 16, 12]. Recently, HyperDeepONet
(HDON) [17] has been introduced as a more expressive variant of DeepONet capable of learning
highly nonlinear operators with fewer network parameters. HDON replaces the branch net with a
hypernetwork which infers the parameters of the trunk (target) net. Instead of propagating the input
function information only through the last layer of the branch and trunk nets, HDON infuses this
information into every parameter of the trunk net, enabling a more comprehensive integration of the
input function across the entire network.

Physics-informed operator learning and domain decomposition. Physics-informed operator learn-
ing allows learning the operator using only the form of the PDE and its initial and boundary conditions,
without the need for large datasets. By embedding the governing physical laws as constraints within
the training process, operating learning methods can be trained in a fully data-agnostic [4], or hybrid
manner [11]. However, similar to physics-informed neural networks (PINNs) [18], physics-informed
operator learning is not without limitations. One major challenge is the convergence issues when
dealing with complex systems, such as those with nonlinear time-varying characteristics and sharp
transitions, which can severely impact the performance [13, 19, 20]. Domain decomposition, an
effective way to tackle such challenges, involves breaking down the PDE domain into smaller, more
manageable subproblems, and thus enhancing convergence. Two notable approaches in this context
are extended PINN (XPINN) [21] and finite-basis PINN (FBPINN). FBPINN [14] is particularly
interesting since, unlike XPINN, it does not introduce new loss terms, thereby maintaining a simpler
optimization landscape. More background on FBPINNs is provided in B.2.
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3 Methodology

3.1 FB-HyPINN

FBPINN partitions the problem domain into smaller, overlapping subdomains, each associated with a
dedicated subnetwork that learns a basis function with compact support [14]. The overall solution is
constructed by combining the basis functions (analogous to FEMs), where the prediction for each
query point is achieved by the weighted sum of outputs from subnetworks whose corresponding
subdomains encompass that point (subnetwork weights are determined by predefined window func-
tions). However, this approach presents a significant drawback: the number of subnetworks (i.e.,
trainable parameters) increases with the number of subdomains, leading to potential inefficiencies
in training. Rather than employing separate subnetworks for each subdomain, we propose a novel
strategy utilizing a hypernetwork architecture, termed FB-HyPINN. In FB-HyPINN, we utilize a
hypernetwork ĥ(d, θH) [22] that computes the parameters {θj}Jj=1 of the subnetworks {ûj}Jj=1 cor-
responding to J overlapping subdomains. The input d to the hypernetwork is a vector that uniquely
defines a subdomain. In our approach we pick the subdomain’s midpoint mj and the distance sj
between the midpoint and subdomain’s bounds as the input to the hypernetwork. Hence, the output
of each subnetwork ûj(x

norm
i , θj) is calculated via obtaining the parameters from the hypernet-

work θj = ĥ((mj , sj), θH) and feeding in the normalized input variables xnorm
i = Norm(xi,Ωj).

Subsequently, the global solution û(xi, θH) for a collocation point xi is obtained as

û(xi, θH) =

J∑
j=1

ωj(xi)ûj(x
norm
i , θj). (1)

where ωj denotes the window function. More details on the functionality and physics-informed
training of FB-HyPINN are provided in B.2.

3.2 FB-HyDON

Dual-hypernetwork module. As depicted in Figure 1, the proposed FB-HyDON model has two
hypernetworks with equal output dimensions followed by a target network which generates the
output solution for any given query point y on the spatiotemporal domain. Operator hypernet
hO is responsible for mapping the input function observations [a(x1), a(x2), . . . , a(xm)] at sensor
points to a feature representation [b1, b2, ..., bq]

T . Domain hypernet hD on the other hand takes
in the subdomain coordinates [s,m]T as the input and generates a feature embedding d. The
hypernets’ outputs are then merged via the Hadamard product, generating the weights of the target
network. While one hypernet might be sufficient to take in and process both input functions and
subdomain information, we observed that separate hypernets considerably improve the model’s
overall performance.

Figure 1: Schematic of proposed FB-HyDON model. The inputs to the hypernetworks consist of a
chunk identifier and a task-specific set of variables (sensory observations for Operator hypernet and
subdomain information for Domain hypernet.) The outputs of the hypernets are merged together via
the Hadamard product to produce the weights of the Target net. Physics-informed losses are obtained
at query points and used to train the hypernets’ parameters.

Finite basis domain decomposition with hypernetwork. As described in Section 3.1, a hypernet-
work (hD in Figure 1) is utilized to generate the parameters for each subdomain’s network, reducing
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Table 1: Comparitive analysis on 1D Sinusoidal and 1D viscous Burgers equations for FBPINN and
FB-HyPINN. Mean relative L2 error (Rel. L2) and mean absolute error (MAE) are reported for each
method. Size refers to the total number of trainable parameters.

Model
Burgers Sinusoidal

Size Rel. L2 MAE Size Rel. L2 MAE
(×10−7) (×10−2) (×10−2) (×10−2)

FBPINN [14] 8425 2.3 5.1 8988 1.07 5.4

FB-HyPINN (ours) 5221 0.36 1.02 6865 3.45 5.39

the overall parameter count while maintaining the model performance. Each subdomain is encoded
into a unique vector [mj , sj ] that captures its spatial information (e.g., bounds coordinates). This
vector serves as input to the hypernetwork, which generates the embedding d for the corresponding
subnetwork. The embedding is then used to generate the parameters of the target network T which
predicts the operator output.

Chunked hypernetwork. As the size of the target network increases, the output layer of the
hypernetwork can get prohibitively large, potentially hindering both training efficiency and model
performance. Chunked hypernetworks [23] offer an effective solution to this challenge. In this method,
the parameters of the target network are generated in smaller, manageable chunks over multiple
steps via iteratively invoking the hypernetwork. To differentiate between chunks, an additional input
C = {c}Nc

i=1 is introduced to the hypernetwork which allows generating chunk-specific outputs for a
given fixed task t. The full set of target network parameters can then be obtained by concatenating
the outputs of the hypernetwork for each chunk: θt = [h(t, c1), ..., h(t, cNc

)]. In the proposed
framework, both hypernetworks (hO and hD) leverage the chunking strategy (Figure 1).

4 Results

Physics-informed learning with finite basis domain decomposition. First, we evaluate the perfor-
mance of the proposed hypernetwork architecture (FB-HyPINN) tasked to perform finite basis domain
decomposition for physics-informed learning. In particular, we investigate two highly nonlinear case
studies 1) high-frequency sinusoidal wave and 2) 1D viscous Burgers equation. We compare the
performance of FB-HyPINN with vanilla FBPINN as the baseline model. The results are presented
in Table 1. We used 28 subdomains and 25 subdomains for the sinusoidal and Burgers’ equations
respectively. We achieve comparable performance for the sinusoidal case with 23% less trainable
parameters and outperform the baseline model in the Burgers’ equation case. Figure A.4 demonstrates
that in comparison to FBPINN, our model was able to more accurately predict the solution near the
discontinuity. Details regarding the experiments and model architectures are provided in C and D.

Learning solution operators with parameter-efficient FB-HyDON. We evaluate the performance of
our operator on three benchmark problems, namely, harmonic oscillator (Appendix A), 1D Burgers’
equation and 1D Allen-Cahn equation, and compare it against four physics-informed baselines,
DeepONet (DON) [4], modified DeepONet (MDON) [10], HyperDeepONet (HDON) [17] and FNO
[11]. For all cases, the task is to learn the solution operator mapping the initial condition a to
the solution u. For Burgers’ and Allen-Cahn equations, we implement two variants of our model,
one with a single hypernetwork (FB-HyDON-1) which takes in both input function and subdomain
information as input, and one with a dual-hypernetwork module (FB-HyDON-2). Details of baseline
models’ architecture and training as well as the benchmark problems’ setting are provided in C and
D.

Table 2 and Figures A.2 and A.3 showcase the performance of the models for 1D Burgers’ equation
(high and low viscosities) and Allen-Cahn equation. Both versions of our models significantly
outperform DeepONet and its variants, resulting in at least a 36% percent reduction in Relative L2

error compared to the next best performer, HyDON. Our model also achieves remarkable efficiency
in terms of network size. With only 95k parameters in the Burgers’ high viscosity case, it matches the
compact architecture of HyDON, while considerably outperforming the larger DON (215k parameters)
and MDON (203k parameters). Additionally, we observe that utilizing the dual-hypernetwork module
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Table 2: Comparitive analysis on 1D viscous Burgers’ equations at high and low viscosity values
and 1D Allen-Cahn equation. FB-HyDON-1 and FB-HyDON-2 are trained using 4 subdomains for
v = 0.01, 16 subdomains for v = 0.005 and 8 subdomains for Allen-Cahn equation.

Model
Burgers (ν = 0.01) Burgers (ν = 0.005) Allen-Cahn
Size Rel. L2 Size Rel. L2 Size Rel. L2

DON [4] 215k 0.14 215k 0.23 278k 0.93
MDON [10] 203k 0.11 203k 0.19 291k 0.91
HyDON [17] 95k 0.089 128k 0.11 229k 0.87

FB-HyDON-1 (ours) 95k 0.057 128k 0.063 197k 0.24
FB-HyDON-2 (ours) 99k 0.048 130k 0.051 202k 0.17

Table 3: Comparitive analysis of FB-HyDON and FNO on 1D viscous Burgers’ equations at various
viscosities and 1D Allen-Cahn equation.

Model
Burgers Allen-Cahn

ν = 0.01 ν = 0.005 ν = 0.001 ϵ = 0.0001

Size Rel. L2 Size Rel. L2 Size Rel. L2 Size Rel. L2

FNO-small [11] 113k 0.015 113k 0.027 165k 0.22 217k 0.27
FNO-large [11] 165k 0.017 165k 0.022 217k 0.14 270k 0.27

FB-HyDON-2 99k 0.048 130k 0.051 202k 0.18 202k 0.17

improved the model’s generalization performance while only marginally increasing the network size.
For lower viscosity (higher nonlinearities and sharper transitions), unlike DeepONet methods, our
models are able to maintain their high performance thanks to the built-in domain decomposition
feature. Similarly, FB-HyDON effectively utilizes domain decomposition to address the Allen-Cahn
equation’s nonlinearities and stiff terms, significantly outperforming DeepONet models.

We also compared the performance of FB-HyDON against FNO across different network sizes
by varying the number of layers (details on the FNO architecture and training can be found in
C). As shown in Table 3, the FNO models achieve higher accuracy on simpler and less complex
problems, such as the high-viscosity Burgers’ equation. However, for highly nonlinear systems like
the low-viscosity Burgers’ and Allen-Cahn equations, the proposed FB-HyDON model can match
or even outperform FNO. This superior performance is attributed to FB-HyDON’s built-in domain
decomposition, which enhances its ability to effectively handle complex nonlinearities (Figure A.3).
This is noteworthy, as it is generally observed that DeepONet-based methods tend to be outperformed
by FNO models [5, 11]. Our findings demonstrate that FB-HyDON not only matches but can
exceed FNO’s performance in complex scenarios when the number of trainable parameters is similar,
highlighting its efficiency and competitive edge.

5 Conclusion

This paper introduced FB-HyDON, a novel DeepONet-based operator architecture, that addresses
key limitations in existing physics-informed operators. By incorporating a built-in domain decompo-
sition feature via a hypernetwork, our model achieves improved parameter efficiency and enhanced
performance, particularly for highly nonlinear systems. The model’s performance was evaluated on
various nonlinear benchmarks including the high-frequency harmonic oscillator and 1D Burgers’
and Allen-Cahn equations. The results demonstrate substantial improvements over DeepONet-based
operators as well as comparable performance against FNO. FB-HyDON’s ability to increase the num-
ber of subdomains without increasing the parameter count allows it to learn and represent complex
dynamics across various scales effectively.
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A Additional resutls

High-frequency harmonic oscillator. We considered a case of high-frequency harmonic oscillator
(ω0 = 80) and trained the operator to learn the mapping between the initial condition (various pairs of
initial displacement and initial velocity [u0, v0]) and the mass displacement over time. As illustrated
in Figure A.1, both the DON and HDON models were unsuccessful in learning the solution operator
and capturing the high-frequency characteristics of the system. In contrast, the FB-HyDON model
effectively harnessed its domain decomposition capabilities to accurately predict the solution and
fully encompass the system’s nonlinearities. For this example, 12 subdomains were used for the
training of FB-HyDON.

Figure A.1: Comparison of operators’ prediction for solving the high-frequency harmonic oscillator
with w0 = 80 via physics-informed training. Each subplot represents a unique initial condition
pair [u0, v0]. Both DON and HDON failed to learn the solution operator, while FB-HyDON was
able to capture the system’s nonlinearities and accurately predict the solution leveraging its domain
decomposition capabilities. 12 subdomains were used to train FB-HyDON.

Figure A.2: Comparison of operators’ prediction (top row) and absolute error (bottom row) for
solving the Burger’s equation with ν = 0.005 via physics-informed training. DeepONet and its
modified version produced the largest error while having more trainable parameters. FB-HyDON
(ours) outperformed other models and generated the most accurate predictions.

Effect of the number of subdomains. Our results reveal a nuanced relationship between the number
of subdomains and FB-HyDON’s performance, given a fixed parameter count, as shown in Table 4.
Initially, increasing the subdomain count leads to consistent performance improvements. However,
this trend eventually reverses, with performance degrading beyond a certain threshold (here, 16
subdomains). This means that finer subdomain partitioning does not necessarily lead to model
improvement. We hypothesize that there are two main factors contributing to this phenomenon. First,
as the number of subdomains grows, the hypernetwork requires greater capacity to effectively manage
the intricacies of each subdomain. With a fixed parameter budget, this increased demand may not be
adequately met. Second, in configurations with numerous subdomains, the flow of information from
the boundary and initial subdomains to central regions becomes increasingly challenging, which can
result in suboptimal performance, as observed in [24].
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Figure A.3: Comparison of operators’ prediction (middle row) and absolute error (bottom row) for
solving the Allen-Cahn equation with ϵ = 0.0001 via physics-informed training. The ground truth
solution is depicted on the top row. FB-HyDON is trained using 8 subdomains.

# of Subdomains 4 8 16 32
Rel. L2 0.0486 0.0482 0.0416 0.0534
MAE 0.0343 0.0341 0.0369 0.0392

Table 4: Effect of number of subdomains on the performance of FB-HyDON.

Figure A.4: Comparison of FBPINN and FB-HyPINN’s predictions (top row) and absolute error
(bottom row) for solving the Burger’s equation with ν = 0.001/π via physics-informed learning with
domain decomposition. Both model has 25 subdomains. The prediction of FB-HyPINN near the
discontinuity is better in terms of absolute error.
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B Additional background

B.1 DeepONet

In DeepONet’s architecture, Gθ comprises a branch net and a trunk net. The branch net takes
the input function values at sensor points a = [a(x1), a(x2), . . . , a(xm)] as input and generates a
finite-dimensional feature embedding b = [b1, b2, . . . , bq]

T ∈ Rq as output. Similarly, the trunk
net encodes the spatiotemporal coordinates of the PDE system y to a feature representation t =
[t1, t2, . . . , tq]

T ∈ Rq dimensionally consistent with the branch net’s output. The output of the branch
and trunk nets are then merged through an element-wise multiplication followed by a summation
to generate Gθ(a)(y) =

∑q
k=1 bktk + b0. The DeepONet can be trained in a supervised learning

manner by minimizing the error between the model’s predicted output and the actual operator solution
across a range of training input functions [4].

B.2 Finite basis domain decomposition using hypernetwork

In FBPINN’s framework, the input domain Ω is partitioned into J overlapping subdomains such that
Ω =

⋃J
j=1 Ωj and the intersection of any two adjacent subdomains is non-empty, i.e., Ωj ∩ Ωk ̸= ∅

for k being an adjacent subdomain to j. A family of sub-networks, denoted as V , is defined as:

V = {ûj(x, θj) | x ∈ Ω, θj ∈ Θj}Jj=1 (2)

Each subnetwork ûj(x, θj) corresponds to a specific subdomain Ωj . These subnetworks operate
independently to learn the solution relevant to their assigned subdomain. According to the FBPINN
scheme [14], the inputs to the subnetworks are normalized separately over each subdomain, which
mitigates the issue of spectral bias. For every collocation point xi, the outputs of the subnetworks
are generated and multiplied with a window value ωj(xi) determined by their respective window
function and summed across all subdomains. An example and description of the window functions
and subdomains are provided in Figure A.5. The primary role of window functions is to bound each
subnetwork to its subdomain by introducing a higher weight near the center of the corresponding
subdomain and zero outside of it.

Figure A.5: a) Visualization of a set of window functions for harmonic oscillator case where time
domain is divided into 12 subdomains. Different colors represent different subdomains and all
subdomains are associated with window function based on their bounds. X-axis represents the time
domain and y-axis shows window function values. Horizontal bars on the top represent the length of
subdomains. b) Visualization of domain decomposition for time-space domain of 1D Allen-Cahn
example. Black box represents the problem domain and overlapping subdomains are shown with
gray rectangles.

As described in Section 3.1, in FB-HyPINN, a hypernetwork ĥ(d, θH) is used to generate the
parameters {θj}Jj=1 of the subnetworks {ûj}Jj=1 assigned to the subdomains. Thus the global solution
on the entire domain is achieved by a weighted summation of subnetworks output ûj(x

norm
i , θj). In

other words, for each collocation point xi the solution is calculated as:

û(xi, θH) =

J∑
j=1

ωj(xi)ûj(x
norm
i , θj) (3)
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Table 5: Architecture of FB-HyPINN model used for training on sinusoidal wave and 1D Burgers’
equation.

Problem Number of Subdomains Hypernet AF Target Net AF Params
Sinusoidal 28 [16]× 6 ReLU [16]× 2 tanh 6865
1D Burgers 25 [12]× 6 ReLU [16]× 2 tanh 5221

Table 6: Architecture of the baseline FBPINN model used for training on sinusoidal wave and 1D
Burgers’ equation.

Problem Number of Subdomains AF Target Net AF Params
Sinusoidal 28 ReLU [16]× 2 tanh 8988
1D Burgers 25 ReLU [16]× 2 tanh 8425

where ωj denotes the window function. This significantly improves the efficiency and scalability of
the domain decomposition in learning nonlinear PINNs. Particularly, in a given PDE of the form

N [u](x) = 0, x ∈ Ω (4)
u(x) = g(x), x ∈ ∂Ω, (5)

N [.] denotes a differential operator, u(x) : Ω → R is the unknown solution, x = {xi}NI
i=1 denotes a

collection of collocation points sampled within the domain interior and {xj}NB
j=1 represents a set of

points sampled along each boundary condition. Additionally, λI and λB are appropriately selected
scalar weights. Just like a regular PINN framework, here, the solution u(x) is approximated by
û(xi; θH) via the defined physics and boundary losses and optimizing the hypernetwork parameters
θH . The loss is represented as:

L(θH) =
λI

N1

N1∑
i=0

(N [û(xi, θH)])2 +
λB

NB

NB∑
i=0

(û(xi, θH)− g(xi))
2. (6)

Figure A.6: Schematic of proposed FB-HyPINN, a finite basis domain decomposition approach
with hypernetwork. The hypernetwork is responsible for generating the weights of the subnetwork
associated with each overlapping subdomain ωi. As opposed to FB-HyDON which is designed
for operator learning, FB-HyPINN is a parameter-efficient variant of FBPINN, used as part of the
FB-HyDON architecture to facilitate the domain decomposition task.

C Model implementation and experiments details

Physics-informed domain decomposition experiments. The architecture details of FB-HyPINN
and FBPINN are given in Table 5 and 6 respectively. Both models are implemented in JAX [25]. For
FBPINN, we developed a version of the model taking FBPINN’s open-source code repository 2 as
reference.

For the high-frequency sinusoidal case, we trained both models for 50k epochs. Both models were
trained using Adam optimizer with a learning rate of 1 × 10−3 and a decay rate of 0.95 per 1000

2https://github.com/benmoseley/FBPINNs
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Table 7: Architecture of FB-HyDON used for training on harmonic oscillator, 1D Burgers’ equation
and 1D Allen-Cahn equation. 1 and 2 in the model name refer to the number of hypernetworks used
in the model architecture.

Problem Model Hypernet AF Target Net AF Params
Oscillator FB-HyDON-1 [32]× 5 ReLU [16]× 2 tanh 6.5k

1D Burgers FB-HyDON-1 [90]× 6 ReLU [32]× 4 tanh 95k
ν = 0.01 FB-HyDON-2 [64]× 5 + [64]× 3 ReLU [32]× 4 tanh 99k

1D Burgers FB-HyDON-1 [100]× 6 ReLU [32]× 5 tanh 128k
ν = 0.005 FB-HyDON-2 [64]× 5 + [64]× 5 ReLU [32]× 5 tanh 130k

1D Allen-Cahn FB-HyDON-1 [100]× 6 ReLU [45]× 5 tanh 197k
FB-HyDON-2 [90]× 5 + [90]× 5 ReLU [32]× 5 tanh 202k

Table 8: Architecture of baseline models used for training on harmonic oscillator and 1D Burgers’
equation and 1D Allen-Cahn equation.

Problem Model Branch/hypernet AF Trunk/target Net AF Params

Oscillator
DON [32]× 4 tanh [32]× 4 tanh 7.7k

MDON [32]× 4 tanh [32]× 4 tanh 10k
HDON [32]× 5 ReLU [16]× 2 tanh 6.1k

1D Burgers DON [128]× 7 tanh [128]× 7 tanh 203k
MDON [128]× 7 tanh [128]× 7 tanh 215k

ν = 0.01 HDON [90]× 6 ReLU [32]× 4 tanh 95k

1D Burgers DON [128]× 7 tanh [128]× 7 tanh 203k
MDON [128]× 7 tanh [128]× 7 tanh 215k

ν = 0.005 HDON [100]× 6 ReLU [32]× 5 tanh 128k

1D Allen-Cahn
DON [150]× 7 tanh [150]× 7 tanh 278k

MDON [150]× 7 tanh [150]× 7 tanh 291k
HDON [100]× 6 ReLU [50]× 5 tanh 229k

epochs. We randomly sample 200 collocation points from the input domain for training and 1000
equally spaced points for testing. The domain was decomposed into 28 overlapping subdomains with
a subdomain length of 0.47. The frequency ω of the sinusoidal function was taken as 15.

For 1D Burgers Equations, we trained both models for 50k epochs. Both models were trained using
Adam optimizer with a learning rate of 1 × 10−3 and a decay rate of 0.95 per 5000 epochs. For
training randomly we sample 40,000 collocation points, 200 BC points, and 200 IC points from
the input domain. Testing was done on 160,000 equally spaced points along both input dimensions
(400 × 400). The domain was decomposed into 5 subdomains along the spacial dimension and
5 across the temporal dimension giving a total of 25 overlapping subdomains. The length of the
subdomains was selected as 0.35 along temporal dimension and 0.7 across the spacial dimension

Operator learning experiments. Details regarding the architectures of FB-HyDON-1 and FB-
HyDON-2 are provided in Table 8. Both models are developed in Jax [25]. We implemented the
baseline models using the open-source implementation of physics-informed DeepONet and modified
DeepONet 3. For HDON, we developed a physics-informed implementation based on the paper [17]
in Jax.

For both 1D Burgers’ and Allen-Cahn equations, we trained DeepONet and its variants for 25k
iterations with a batch size of 1000. 1000 training and 100 test input functions (initial conditions) are
randomly generated using a mean-zero Gaussian random field GRF ∼ N

(
0, 252

(
−∆+ 52I

)−4
)

and used for training and evaluation of the operators. 40 equally-spaced sensor points were used
for encoding the input function information. All models were trained using Adam optimizer with
an initial learning rate of 1× 10−3 and an exponential decay rate of 0.9 per 1000 epochs. For each
training input function, 2500 collocation points, 100 IC points and 100 BC points were uniformly

3https://github.com/PredictiveIntelligenceLab/Physics-informed-DeepONets
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Table 9: Architecture of FNO models used for training on 1D Burgers’ and Allen-Cahn equations.

Problem Model Fourier layers Mode 1 Mode 2 AF Params
1D Burgers FNO-small [32]× 3 5 5 GeLU 113k
ν = 0.01 FNO-large [32]× 4 5 5 GeLU 165k

1D Burgers FNO-small [32]× 3 5 5 GeLU 113k
ν = 0.005 FNO-large [32]× 4 5 5 GeLU 165k
1D Burgers FNO-small [32]× 4 5 5 GeLU 165k
ν = 0.001 FNO-large [32]× 5 5 5 GeLU 217k

1D Allen-Cahn FNO-small [32]× 5 5 5 GeLU 217k
FNO-large [32]× 6 5 5 GeLU 270k

sampled and used for training. For models with hypernetwork, we used the chunking strategy and set
the number of chunks to 6.

For FNO models, we followed the training procedure used in [11]. In particular, all models were
trained for 500 epochs with a batch size of 20 (each batch representing a separate training sample.)
Adam optimizer with a learning rate of 0.001 and a decay rate of 1/2 per 100 epochs was used. To
ensure a fair comparison with DeepONet-based models, we trained and evaluated the FNO models
on resolution 50× 50. This results in a total of 2500 collocation points, equal to that of DeepONet
models. Similarly, FNO models were exposed to the same 1000 GRF initial conditions sampled at 50
locations. Details regarding the architecture of FNO models are summarized in Table 9.

For the harmonic oscillator, the models were trained for 100k iterations on the full batch of data. We
sampled 200 initial condition pairs [u0, v0] for training and three for testing from [0, 1] for initial
displacement u0 and [−50,+50] for initial velocity v0. Adam optimizer with an initial learning rate
of 1× 10−3 and a decay rate of 0.9 per 10k epochs was used for all cases. 500 collocation points and
1 initial condition point were used to minimize the physics-informed losses.

D Benchmark problems setting

High-frequency sinusoidal. Following [14], this case represents a 1D scenario where neural
networks often encounter spectral bias, necessitating a domain decomposition approach. Considering
the following problem:

du

dx
= cos(ωx),

u(0) = 0,

where x, u, ω ∈ R is the frequency of the wave. The exact solution to this problem is given by:

u(x) =
1

ω
sin(ωx).

1D Burgers’ equation for FB-HyPINNs. We tested the proposed FB-HyPINN and FBPINNs on 1D
viscous time-dependent Burgers equation, given by:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
,

with initial and boundary conditions,

u(x, 0) = − sin(πx),

u(−1, t) = 0,

u(1, t) = 0,

where x, t, u, ν ∈ R, and the problem domain is x ∈ [−1, 1] and t ∈ [0, 1]. Notably, for small values
of the viscosity parameter ν, specifically ν = 0.01

π , the solution develops a discontinuity at x = 0 as
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time progresses. The exact solution can be obtained from open source code repository 4, that uses the
Hopf-Cole transform as explained in [26].

Harmonic Oscillator for operator learning. We solved the 1D damped harmonic oscillator, where
we aim to model the displacement u(t) of the oscillator over time. The problem is defined by the
following ordinary differential equation (ODE):

m
d2u

dt2
+ µ

du

dt
+ ku = 0, (7)

where m is the mass of the oscillator, µ is the damping coefficient, and k is the spring constant.

Considering δ = µ
2m and ω0 =

√
k
m , we investigated the under-damped state where δ < ω0

[14]. With the initial conditions u(0) = u0 and du
dt (0) = v0 the exact solution will be:

u(t) = e−δt

(
u0 cos(ωt) +

v0 + δu0

ω
sin(ωt)

)
. (8)

1D Burgers’ equation for operator learning. To demonstrate the capability of our proposed operator
in addressing nonlinearities in governing PDEs, we utilized the 1D Burgers’ equation benchmark,
following the setup described in [5]. The equation is given by:

∂u

∂t
+ u

∂u

∂x
− ν

∂2u

∂x2
= 0, (x, t) ∈ (0, 1)× (0, 1], (9)

u(x, 0) = a, x ∈ (0, 1), (10)
with periodic boundary conditions:

u(0, t) = u(1, t), (11)
∂u

∂x
(0, t) =

∂u

∂x
(1, t). (12)

In our experiments, we set the viscosity to ν = 0.01 and ν = 0.005 and generated the initial condition
a from a GRF. To generate the solution test data, we followed the procedure outlined in [10]. We
solved the 1D Burgers’ equation using conventional spectral methods, assuming periodic boundary
conditions. The initial condition s(x, 0) = u(x) was integrated up to a final time t = 1, with temporal
snapshots of the solution recorded at regular intervals.

1D Allen-Cahn for operator learning. For 1D Allen-Cahn equation with periodic boundary
conditions, we followed the setup described in [18]:

∂u

∂t
− 0.0001

∂2u

∂x2
+ 5u3 − 5u = 0, x ∈ [−1, 1], t ∈ [0, 1], (13)

u(x, 0) = a, (14)
u(−1, t) = u(1, t), (15)

∂u

∂x
(−1, t) =

∂u

∂x
(1, t). (16)

4https://github.com/benmoseley/FBPINNs/tree/main/fbpinns/traditional_solutions/analytical
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