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Abstract

Machine Learning guided data augmentation may support the development of
technologies in the physical sciences, such as nuclear fusion tokamaks. Here we
endeavor to study the problem of detecting disruptions — i.e. plasma instabilities
that can cause significant damages, impairing the reliability and efficiency required
for their real world viability. Machine learning (ML) prediction models have shown
promise in detecting disruptions for specific tokamaks, but they often struggle in
generalizing to the diverse characteristics and dynamics of different machines.
This limits the effectiveness of ML models across different tokamak designs and
operating conditions, which is a critical barrier to scaling fusion technology. Given
the success of data augmentation in improving model robustness and generaliz-
ability in other fields, this study explores the use of a novel time series viewmaker
network to generate diverse augmentations or "views" of training data. Our results
show that incorporating views during training improves AUC and F2 scores on
DisruptionBench tasks compared to standard or no augmentations. This approach
represents a promising step towards developing more broadly applicable ML mod-
els for disruption avoidance, which is essential for advancing fusion technology
and, ultimately, addressing climate change through reliable and sustainable energy
production.

1 Introduction

One of the most current notable efforts to get an idea from physical sciences into commercializable
reality is nuclear fusion. Nuclear fusion has long been considered a “holy grail” in providing carbon-
free energy without significant waste or land demands [Giuliani et al., 2023, Spangher et al., 2019].
A leading approach to generating fusion in laboratory plasmas is magnetic confinement via tokamak
machines. However, the commercial viability of tokamaks hinges on developing their capability to
accurately predict plasma disruptions: losses in plasma stability which may damage a tokamak and
take it offline for months at a time.

Disruption are difficult to predict with first principles or physics-only models. Thus, a significant
focus within the nuclear fusion community has been on the development of machine learning (ML)
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models for disruption prediction. ML models are already in production at major tokamaks, including
random forest predictors and simple neural networks [Rea et al., 2019, Hu et al., 2021, Pautasso
et al., 2002], and research into various deep learning architectures has established the state of the
art in disruption prediction capabilities [Zhu et al., 2020, Arnold et al., 2023, Spangher et al., 2023a,
Zhu et al., 2020]. However, because the characteristics and physical dynamics of a tokamak can
change dramatically depending on the machine’s design [Granetz et al., 2018], and over time as the
machine is upgraded [Kallenbach et al., 2017] or modified [Greenwald et al., 2014], it is imperative
that prediction models can generalize to these different sources of data.

Data augmentation is one way to improve model generalizability [Iwana and Uchida, 2021] and
robustness [Hong and Travis, 2022]. Since tokamak data is comprised of multivariate time series,
common augmentation strategies can include jittering, slicing, and warping [Um et al., 2017, Wen
and Keyes, 2019]. However, naively applying these techniques can lead to augmentations that fail
to mimic plausible plasma behavior, impairing the model’s ability to learn patterns relevant for
disruption prediction [Fu et al., 2020]. Previously, a Stutent t process based approach has been used
for tokamak data [Katharina et al., 2022], however it’s direct impact on post-hoc models was not
evaluated. In this work, we explore the use of “Viewmaker Networks” [Tamkin et al., 2021], models
which learn to generate augmentations through adversarial learning. We hypothesize that viewmaker
augmentations, or “views", are a solution for incorporating realistic yet diverse augmentations of
disruption data which can improve the robustness of models toward disruptive discharges, and we
demonstrate that using views in training which improve model AUC and F2 on DisruptionBench
[Spangher et al., 2024] tasks over multiple disruption prediction models when compared to training
on standard augmentations such as those present in the tsaug library or training without augmentation.

The novelty of our paper is as follows:
(1) We present an original adaptation of the image-based viewmaker network for time series
augmentation and benchmark against other time series augmentation techniques.
(2) We are the first to rigorously test generative augmentation methods in the context of
nuclear fusion datasets.

2 Background

Disruption benchmarks: DisruptionBench [Spangher et al., 2024] is the first disruption prediction
benchmark aimed at assessing model generalizability across tokamaks. The data is comprised of
roughly 30k trials (referred to here as “discharges”) from three tokamaks: General Atomics’ DIII-D,
MIT’s Alcator C-MOD, and the Chinese Academy of Science’s EAST. Training and tests sets for
each task can be generated by specifying the following parameters: (1) New Machine: One of three
tokamaks is designated as the "new machine." The test set is comprised of only "new machine"
discharges while the discharges in the training set are specified by the "data-split" parameter. (2) Data-
Split: In this work, we focus on the following four cases with relation to two training machines and
one test machine: Case 1, Zero-Shot; Case 2, Few-Shot; Case 3: Many-Shot. Case 4: Train and test
from a single machine. For details on how true and false positives are calculated in DisruptionBench,
please refer to Appendix B.1

Dataset provenance and preparation: Our dataset is open1 [Zhu et al., 2020]. Each tokamak
discharge lasts from seconds to minutes, generating gigabytes of multi-modal data, of which we focus
on discharges’ global state variables listed in Table 2. The tokamaks may be generally characterized
by the information in Table 3, which demonstrates significant difference in average discharge length,
sampling rate, and number of samples.

Each discharge is of length n, and we discard discharges that are shorter than 125ms. Each tokamak’s
diagnostics store metrics from each discharge at a different sampling rate. We normalize across
tokamaks by discretizing at 5ms and interpolating via forward-fill. Roughly 10% of discharges end in
disruptions. We truncate our time series to X = 1, ..., n−ν, where n is the full length and ν = 40ms,
the minimum amount of time for a disruption mitigation system to activate. For a description of the
features chosen, please see Table 2.

Viewmaker networks: Viewmaker Networks [Tamkin et al., 2021] are one approach to domain-
agnostic contrastive learning. They adversarially train an encoder network and a generative network

1Please find our data at the following url: https://dataverse.harvard.edu/dataset.xhtml?
persistentId=doi:10.7910/DVN/XIOHW1.
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(viewmaker) similar to a Generative Adversarial Network (GAN) set-up [Goodfellow et al., 2014]
while using a SimCLR loss [Chen et al., 2020a]. For a more complete description of Viewmakers,
please see Appendix A.

3 Models and methods

Time series viewmakers: Inspired by series decomposition blocks in [Wu et al., 2022], we
first decompose our time series X ∈ RT×d into trend-cycle and seasonal components: Xt =
AvgPool(Pad(X)), Xs = X − Xt. Because we decompose the original time series, (i.e.
X = Xs + Xt) we use a separate generator to perturb each component. The perturbations are
then combined, smoothed, constrained, and added to the original time series. See Figure 1 for an
illustration of time series viewmakers.

We find the selection of generator networks Vt and Vs to be critical to performance. It is important
that these generators generate stochastic and challenging perturbations. To better capture long-term
temporal dependencies in the data, we change the viewmaker/generator from residual blocks to an
LSTM-Transformer based model similar to the LSTMFormer detailed later. Noise is concatenated
between each transformer layer to ensure stochastic perturbations. Furthermore, we adopt an
adversarial SimCLR loss and a distortion budget ϵ = 0.1. We trained our viewmaker for 10000
steps with a loss weight of 2.5 and a loss temperature of 0.05339. However, we encourage others to
experiment with different loss functions, distortion budgets, generator networks, and encoders.2

Tested models: For benchmarking the effectivness of these augmentations, we experiment with 3 post-
hoc models: LSTMFormer, FCN, and GPT-2. Compared to transformers, the sequential processing of
LSTMs makes them particularly effective in encoding temporal relations within sequences. Therefore,
the LSTMFormer first uses an LSTM layer to generate time-conscious positional encodings, similar
to [Zeyer et al., 2019, Lim et al., 2020]. The output of the LSTM layer is then propagated through a
normalization layer [Ba et al., 2016], a four-block transformer encoder [Vaswani et al., 2017], and a
classification head. The FCN is a convolutional neural network variant first introduced in [Wang et al.,
2016]. GPT-2 introduced for disruption prediction in [Spangher et al., 2023b] is an autoregressive
transformer decoder model which uses a pretraining and a curriculum training scheme.

4 Results and discussion

Similar to the DisruptionBench paper [Spangher et al., 2024], we use AUC and F2 score to assess the
performance of each augmentation strategy on the four cases specified in Section 2, setting C-MOD
as the new machine (see Figure 3 for an explanation of this choice). F2 score is used since false
negatives are more costly in the case of disruption avoidance. The results are summarized in Table 1.

Better disruptive shot prediction: As shown in Table 1, the use of viewmaker views resulted
in the highest average AUC scores across all post-hoc models with an improvement of 0.14% for
LSTMFormer, 2.3% for FCN, and 1.17% and for GPT-2. Views also contributed to the highest mean
F2 score for FCN and GPT-2 with increases of 0.97% and 4.02% respectively. We also note that
for case 3 (many shot case) we see a average improvement of 7.6% in F2, and for case 2 (few shot
case) we see a significant improvement of 18.1%. On the other hand, tsaug seems to lag behind the
viewmaker on average and actually drops mean F2 substantially for LSTMFormer (-18.23%) and
FCN (-19.55%).

Learning disruptive features: The results on cases 2 and 3 in particular suggest that viewmakers
help models learn underlying disruptive features even with limited samples. To understand how
a model trained on views might behave in a production system, we plot a confusion matrix using
one sampled shot from each category: TP, FP, TN, FN (Figure 5). It seems that features learned
from views can simultaneously help models detect disruptions faster as well as overfit less to false
disruptive cues compared to naive or no augmentations.

In-domain augmentations: We hypothesize that learning of disruptive features is a product of
viewmakers’ ability to generate more physically-realistic augmentations of the original data. To
explore this further, we compared the dynamic time warping (DTW) similarity of 250 randomly

2Our code is public and may be found at the following url: https://github.com/utterwqlnut/
plasma-data-augmentation.git
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Table 1: DisruptionBench results for LSTMFormer, FCN, and GPT-2 trained on using no augmenta-
tions, tsaug standard augmentations, and viewmaker augmentations during training. "New Machine"
is C-MOD in each case. Refer to Section 2 for further descriptions of each case

LSTMFormer FCN GPT-2

Aug Type AUC F2 AUC F2 AUC F2

Case 1: Zero-Shot
None 0.571 0.499 0.518 0.505 0.575 0.525
TS 0.571 0.358 0.561 0.166 0.592 0.535
Viewmaker 0.609 0.342 0.546 0.503 0.527 0.404

Case 2: Few-Shot
None 0.592 0.389 0.631 0.513 0.695 0.523
TS 0.537 0.189 0.579 0.413 0.723 0.616
Viewmaker 0.568 0.545 0.637 0.494 0.731 0.628

Case 3: All machines
None 0.808 0.708 0.847 0.758 0.711 0.524
TS 0.769 0.641 0.810 0.72 0.74 0.58
Viewmaker 0.823 0.735 0.853 0.777 0.754 0.611

Case 4: Only CMOD
None 0.792 0.707 0.791 0.7 0.742 0.617
TS 0.79 0.696 0.781 0.691 0.675 0.512
Viewmaker 0.766 0.669 0.814 0.725 0.744 0.632

Mean
None 0.691 0.576 0.697 0.619 0.681 0.547
TS 0.667 0.471 0.683 0.498 0.683 0.561
Viewmaker 0.692 0.573 0.713 0.625 0.689 0.569

sampled disruptive discharges from each machine against their views and tsaugs (see Figure 4). For
this sample, the average DTW for views was 409.14 while for tsaugs it was 770.39, indicating that
views are much more faithful to the original data.

5 Limitations

Throughout the different post hoc models, training with viewmaker augmentations can cause loss
in precision: -2.3% in FCN, and -9.4% in GPT-2; however, for LSTMFormer we see a +5.2%
improvement (see Table 4). The similarity of many disruptive and non-disruptive shots could be
one reason for this tradeoff (see Figure 6) while class imbalance might be another. While ideally
recall and precision would both increase, for disruption avoidance control the cost of false negatives
significantly outweigh the costs of false positives. Finally, our access to compute was limited, so
we did not have the ability to present runs on multiple seeds, which would strengthen the statistical
significance of our results and allow us to test different combinations of data-splits and new machines.

6 Conclusion and future work

Avenues for future work can include modifying viewmaker features, integrating the trained encoder
into a new classifier, and comparing viewmakers to other time series generators such as TimeGAN
[Yoon et al., 2019]. Additionally, more post-hoc models should be tested (see [Rea et al., 2019,
Hu et al., 2021, Pautasso et al., 2002, Zhu et al., 2020]), and new tokamaks should be added to
DisruptionBench.

In this work, we propose a novel time series variant of viewmaker networks and investigate its utility
in generating data augmentations or "views" of tokamak discharge time series to improve model
robustness for nuclear fusion disruption prediction and disruption avoidance control. Our findings
suggest that using viewmaker views improve model AUC and F2 across a diverse set prediction tasks
compared to naive or no augmentations, paritcularly in few and many shot cases. By improving
the robustness of these models, we move closer to making tokamaks a commercial and tangible
realization of decades of work in the physical sciences.
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A Viewmaker networks

A.1 Contrastive learning

Contrastive learning is a technique which aims to help models learn an embedding space in which
views derived from the same input are grouped together while dissimilar views are pushed apart. The
success of contrastive learning approaches has been extensively researched, particularly on computer
vision benchmarks [Bachman et al., 2019, He et al., 2020, Chen et al., 2020a,b], but also in other
domains [Gao et al., 2022, Yue et al., 2022]. While generating handcrafted views for tasks such as
image classification have been refined, the process remains a handicap for domains such as time
series.

SimCLR loss is one approach to contrastive learning proposed in [Chen et al., 2020a] for visual data.
If given N pairs of views generated from the same input X , the SimCLR loss is defined to be

L =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)],

ℓ(i, j) = − log
exp(s(i, j))∑2N

k=1 1k ̸=i exp(s(i, k))

(1)

Here, s(i, j) is the cosine similarity of embeddings of views i and j.

A.2 Viewmaker components

To visually reinforce the brief description of viewmakers in Section 2, we encourage readers to
refer to the top illustration in Figure 1, which gives a high-level overview of the components of a
viewmaker network as described in [Tamkin et al., 2021]. The bottom illustration highlights the
specific changes to the viewmaker created for this work which is discussed in Section 3.

In order to force the encoder to learn useful latent representations of the original data, the viewmaker
network presents the encoder with stochastic perturbations of the original data projected onto an ℓp
ball. Such projections have been studied in the context of adversarial robustness (e.g. in [Goodfellow
et al., 2015]). The strength of the perturbations is further controlled by a distortion-budget: a
hyperparameter which limits the radius of the ℓp ball to ensure that views don’t become too difficult
to learn useful representations from.

The advantage to using viewmakers over handcrafted augmentations is their ability to learn augmen-
tations from the data directly. In the context of disruption prediction, viewmakers could help models
pick up hidden trends and physical characteristics of disruptive discharges [Minderer et al., 2020]
that are machine-agnostic: a critical step in the pursuit of more generalized models.
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Figure 1: Overview of the time series viewmaker. Vt and Vs are generator networks which generate
perturbed time series from Xt and Xs respectively.

Figure 2: Illustration of the categorization of true and false positives, and true and false negatives.
Figure adapted from ref. [Keith et al., 2024].

B Background (continued)

B.1 DisruptionBench

Designation of true or false positives in DisruptionBench is calculated similar to how a production-
scale Disruption Mitigation System (DMS) would behave. The DMS needs at least some time to
engage3, ∆treq. Two thresholds Tlow, Thigh ∈ (0, 1) and a hysteresis value h is set, and a prediction
model outputs disruptivity scores, i.e. the probability that a disruption will happen in the future. If
the disruptivity is above Thigh for h time steps before ∆treq, the prediction is categorized as positive
at time ∆twarn. Else, the discharge reaches its planned end and the model predicts a negative. If the
disruptivity dips below Tlow, the hysteresis counter is reset. For an illustration of how this translates
into true and false positives and negatives, please see Figure 2.

C Results (continued)

3Two common methods of mitigating the harm from a disruption include: (1) puffing a heavy inert gas like
Neon or Argon around the chamber’s walls [Jernigan et al., 2005] or (2) shooting a frozen hydrogen pellet into
the middle of the plasma reaction [Jachmich et al., 2021]. Both methods introduce particles that absorb the
energy of the plasma.
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Figure 3: A UMAP clustering of disruptive discharges from each machine. Many discharges from
C-MOD exhibit distinct behavior from those from DIII-D and EAST. Thus, to challenge models
in their ability to learn general disruptive features, we designate C-MOD as the "new machine"
parameter in our experiments.

Figure 4: Comparison of dynamic time warping (DTW) similarities between disruptive discharges
and their views (in cyan) and their tsaugs (in orange). Discharges were sampled evenly at random
across each machine.
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Table 2: The input features of the model, their definitions, and a categorization of the type of
instability the signal indicates. The features listed are the same across all machines. While this table
is adapted from [Zhu et al., 2020], some of our symbology, features, and feature descriptions are
unique.

Feature Definition Relevant Insta-
bility

Units

βp Plasma pressure normalized by poloidal
magnetic pressure

MHD Unitless

ℓi Normalized plasma internal inductance MHD Unitless

q95 Safety factor at 95% of normalized flux
surfaces

MHD Unitless

n = 1 mode n = 1 component of the perturbed mag-
netic field

MHD T

n/nG Electron density normalized by Green-
wald density limit [Greenwald, 2002]

Dens. limit Unitless

Lower Gap Gap between plasma and lower divertor Shaping m

κ Plasma elongation Shaping Unitless

Ip,error/Ip,prog Plasma current deviation from the pro-
grammed plasma trace (error), normal-
ized by the programmed plasma trace
(prog)

Impurities,
hardware, run-
away electrons

Unitless

Vloop Toroidal “loop” voltage Impurities V

Tokamak Indicators Three additional features with binary en-
codings of whether the data came from
Alcator C-Mod, DIII-D, or EAST

n.a. Unitless

Table 3: Metrics on a dataset composed of multiple tokamaks.

Tokamak τ Number of Discharges Average Discharge Length Initial Sampling Rate

C-Mod 50 ms 4000 0.52 s 0.005 ms
DIII-D 150 ms 8000 3.7 s 0.01 ms
EAST 400 ms 11000 5.3 s 0.025 ms

Table 4: Full DisruptionBench results (including Recall and Precision) for LSTMFormer, FCN, and
GPT-2 trained on using no augmentations, tsaug standard augmentations, and viewmaker augmenta-
tions during training. "New Machine" is C-MOD in each case.

LSTMFormer FCN GPT-2

Aug Type AUC Recall Precision F2 AUC Recall Precision F2 AUC Recall Precision F2

Case 1:
Zero-Shot

None 0.571 0.772 0.207 0.499 0.518 0.912 0.181 0.505 0.575 0.860 0.205 0.525
TS 0.571 0.404 0.247 0.358 0.561 0.140 0.615 0.166 0.592 0.860 0.213 0.535
Viewmaker 0.609 0.333 0.380 0.342 0.546 0.842 0.193 0.503 0.527 0.561 0.190 0.404

Case 2:
Few-Shot

None 0.592 0.439 0.269 0.389 0.631 0.684 0.257 0.513 0.695 0.561 0.410 0.523
TS 0.537 0.175 0.270 0.189 0.579 0.509 0.236 0.413 0.723 0.789 0.328 0.616
Viewmaker 0.568 0.965 0.199 0.545 0.637 0.614 0.278 0.494 0.731 0.807 0.333 0.628

Case 3:
All machines

None 0.808 0.807 0.474 0.708 0.847 0.824 0.573 0.758 0.711 0.526 0.517 0.524
TS 0.769 0.702 0.476 0.641 0.810 0.877 0.420 0.720 0.740 0.596 0.523 0.580
Viewmaker 0.823 0.877 0.446 0.735 0.853 0.930 0.469 0.777 0.754 0.649 0.493 0.611

Case 4:
Only CMOD

None 0.792 0.912 0.371 0.707 0.791 0.877 0.388 0.700 0.742 0.719 0.394 0.617
TS 0.790 0.860 0.395 0.696 0.781 0.877 0.373 0.691 0.675 0.579 0.351 0.512
Viewmaker 0.766 0.842 0.366 0.669 0.814 0.877 0.427 0.725 0.744 0.772 0.367 0.632

Mean

None 0.691 0.733 0.330 0.576 0.697 0.824 0.350 0.619 0.681 0.667 0.382 0.547
TS 0.667 0.535 0.347 0.471 0.683 0.601 0.411 0.498 0.683 0.706 0.354 0.561
Viewmaker 0.692 0.754 0.347 0.573 0.713 0.816 0.342 0.625 0.689 0.697 0.346 0.569
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Figure 5: A comparison of four discharges from Alcator C-Mod for unrolled disruptivity on the
test set, chosen based on outcomes of an LSTMFormer trained on the three augmentation strategies.
While behaviors differ slightly, training on views seems to improve awareness of disruptive features,
leading to faster disruption recognition and more confident true negative predictions.

Figure 6: UMAP comparison of disruptive and non-disruptive discharges randomly sampled from
Alcator C-MOD.
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