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Abstract

The generation of high-resolution simulations is essential for advancing our un-
derstanding of the universe’s most violent events, such as Black Hole mergers.
However, generating Black Hole simulations is limited by prohibitive computa-
tional costs and scalability issues, reducing the simulation’s fidelity and resolution
achievable within reasonable time frames and resources. In this work, we introduce
a novel method that circumvents these limitations by applying super-resolution
techniques without directly needing high-resolution labels by leveraging the Hamil-
tonian and momentum constraints – fundamental equations in general relativity that
govern the dynamics of spacetime. Our novel approach addresses the computational
inefficiencies of current methods while maintaining the physical accuracy required
in numerical relativity simulations. We show that our method creates a two-orders-
of-magnitude reduction in numerical error and generalizes to out-of-distribution
simulations.
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1 Introduction

The advent of gravitational wave astronomy has heralded a new era in astrophysics, enabling un-
precedented insights into some of the universe’s most spectacular events, such as Black Hole mergers
and neutron star collisions. Numerical relativity (NR) simulations play a crucial role in predicting
the waveforms of such phenomena and are essential for the successful analysis of data observed by
gravitational wave detectors like LIGO and Virgo Abbott et al. [2016]. As the sensitivity of upcoming
detectors (e.g., LISA Amaro-Seoane et al. [2017]) will increase by orders of magnitude, the demand
for more accurate and diverse waveforms generated by NR simulations grows exponentially Afshordi
et al. [2023]. However, existing numerical methods face challenges in meeting these demands, which
could limit the scientific return on the significant financial investments made in these detectors.

Next-generation detectors will require more advanced solutions capable of handling longer, higher-
resolution simulations and varied mass ratios for black hole systems. In this publication, we present
a super-resolution inspired method that employs a convolutional neural network (NN) and uses
constraints from general relativity to make the network physics-aware. The method is designed to be
applied to current state-of-are numerical codes, and aims to reduce simulation error and enhance the
accuracy of waveform predictions.

Most super-resolution techniques require high-resolutions labels for the training. However, in an NR
context to get these high-resolution labels requires us to run expensive simulations, and to avoid this
computational cost, we propose a framework that uses a unique loss function derived from general
relativity’s unique set of physical constraints. These constraints – referred to as Hamiltonian and
Momentum constraints – are a crucial part of monitoring the stability of simulations. If they are not
fulfilled below a threshold or show fast-growing trends, it is a strong indication of a problem in the
simulation.

2 Background: Numerical Relativity

Numerical relativity (NR) provides the computational framework for simulating the complex dy-
namics of spacetime, such as those observed in Black Hole mergers and gravitational waves. This
section outlines the core concepts of numerical relativity, offering a small overview of its theoretical
underpinnings. For those interested in a more in-depth exploration, please refer to Baumgarte and
Shapiro [2021, 2010], Alcubierre [2008].

2.1 Foundations of General Relativity

The theoretical backbone of NR is Einstein’s general theory of relativity Einstein et al. [1916], which
is described by the equation

Gµν = 8πTµν . (1)
This equation describes how matter and energy (encoded in the stress-energy tensor Tµν) influence
the curvature of spacetime, represented by the Einstein tensor Gµν .

The direct application of Einstein’s equations in their original form is not feasible in NR simulations
due to a lack of distinction between time and space. This challenge is addressed by the Arnowitt-
Deser-Misner (ADM) (3+1) decomposition Arnowitt et al. [1959], a mathematical formalism that
reformulates Einstein’s equations into a set suitable for numerical analysis. To be also numerically
stable, we use the standard CCZ4 formulation Alic et al. [2013, 2012].

Einstein’s equation in the ADM decomposition gives rise to the constraint equations that we propose
for our framework as following

H := R+
2

3
K2 − ÃklÃ

kl − 16πρ, (2)

Mi := γ̃kl

(
∂kÃli − 2Γ̃m

l(iÃk)m − 3Ãik
∂lχ

2χ

)
− 2

3
∂iK − 8πSi, (3)

where R is the Ricci scalar, χ, K, Ãik and γ̃kl are evolution variables, ρ and Si are energy and
momentum density – both describe matter moving on the space manifold (e.g., Neutron Stars, Humans,
Photons, cats). These equations H and Mi need to be equal to zero to be consistent with general
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Figure 1: Schematic representation of our framework: (1) We first apply a commonly used interpola-
tion method to up-sample our simulation, then (2) a network takes the up-sampled simulation and
produces a correction δx. This correction is then (3) scaled by the hyper-parameter s and added to the
up-sampled simulation. The corrected simulation results in reduced constraints violations, leading to
an improved simulation.

relativity. However, this is never truly possible in numerical methods as the discretization introduces
small errors. Although there are many methods that try to minimize this error by modifying the
evolution equations (as was done in the CCZ4 formulation), with our framework, we introduce a
physics-aware network to minimize these errors.

3 Methodology

3.1 Loss functions

In contrast to supervised ML methods – where we would use the distance between predicted and
ground truth as a loss – here we use the sum of squares of the violation of Eq. 2 and Eq. 3.

LGR =
∑
j

(
|H(xj)|2 +

D∑
i=0

|Mi(xj)|2
)

, (4)

where D is the number of spatial dimensions (three for our experiments) and xj represent positions on
the simulation grid. While the LGR loss incurs a higher computational cost per iteration, it converges
significantly faster. In our experiments, the slower per-iteration time is roughly balanced by fewer
required iterations, resulting in similar overall convergence times compared to L1.

We defined the normalized loss that we used to evaluate the performance of our model and the
baseline as

NormalizedLGR =
LGR(Ourmethod)

LGR(Baseline)
. (5)

It is important to draw a clear distinction between Physical Informed Neural Networks (PINNs) Raissi
et al. [2017], which also use partial differential equations (PDEs) as a loss. While our framework
takes as input an approximation of the solution and uses the physical constraints to improve it, PINNs
take as input the spatial coordinates and produce the value of the PDE solution at the given coordinate.
Furthermore, while PINNs need to be retrained for each new simulation, our method needs to be
trained once and can then be inferred on different simulations.

3.2 Dataset generation

Our framework employs GRTeclyn (formerly GRChombo)Radia et al. [2022], Andrade et al. [2021]
an established open-source codebase for the NR simulations. We simulate two equal-mass Black
Holes, a common reference in numerical relativity 1, similar to how the MNIST dataset is used as a

1Data is available at https://huggingface.co/datasets/anonymous/anonymous.

3

https://huggingface.co/datasets/anonymous/anonymous


benchmark in computer vision. The dataset contains time-evolution, thus including movement of the
two black holes.

To be able to fit our simulations in GPU memory we subdivided it into blocks of (16 × 16 × 16)

points and 25 channels representing different evolution variables (i.e., χ, K, Ãik, γ̃kl, α and βi). For
the model presented in this publication, we use 15G of data, which corresponds to 19208 blocks.
We trained on 80% of the data and used 20% to test the in-distribution performance. To test out-
of-distribution performance, we also created several independent simulations with increasing Black
Hole masses.

3.3 Framework architecture

An overview of the framework architecture can be found in Fig. 1. First we up-sample our simulation
from low resolutions using a standard higher order interpolator commonly used throughout Black
Holes simulations Schnetter et al. [2004] 2. This will not only be the input for the neural network that
calculates the correction δx, but also will serve as the baseline. As we do not know the scale of our
correction priori, we introduce a rescale factor s to reduce floating-point problems. So, our correction
is

x+ sδx , (6)

where x is the vector of all variables x = (χ,K, Ãik, . . . ). For our data, we found that s =
10−4, 10−5 works well.

Numerical Stability As the Hamiltonian and Momentum constraints (Eq. 2 and 3) are mathemati-
cally underspecified (we have 25 variables and only four equations), there are many possible solutions
that the system can take. We can address this by introducing masking, changing our correction (Eq. 6)
at training to

x+m · sδx , (7)
where m is a mask. To clarify why this approach works, consider a scenario where δx is large. If two
neighboring points are compared, and one is masked while the other is not, the resulting difference
between these points will be significant. This, in turn, leads to large gradients. Since gradients
contribute to the LGR loss, solutions with large δx are penalized. We aim to avoid such solutions
because we want δx to remain small, keeping the system close to its original state x.

Neural Network Details Since translation symmetry is inherently encoded in Einstein’s gravity
when using a Cartesian grid, convolutional neural networks become a natural choice for our frame-
work. We constructed a convolutional NN composed of 4 hidden layers with 64 channels and ReLU
non-linearity at the end of every hidden layer. To keep both input and output sizes the same, we
employ padding. Lastly, as the gradients involved in this process can be very small, we use double
precision to avoid any underflow issues. For the experiment presented in this paper, this simple
architecture is sufficient. However, for larger datasets or more complex tasks, deeper networks with
enhancements such as residual connections He et al. [2015] or more advanced architectures like
U-Nets Ronneberger et al. [2015] may be necessary to ensure better scaling and performance.

4 Results

Our framework shows an improvement of two orders in magnitude in simulation quality and general-
izes to out-of-distribution simulations (Fig. 2). We emphasize that a major advantage of our approach
is not requiring any high-resolution simulation as ground truth to train the NN. Our observed increase
in performance was obtained by using an NN together with a physics-aware loss.

One limitation of this paper is that our analysis is conducted post-hoc—meaning the simulation
generates low-resolution data, and our framework is applied only after the simulation has finished.
Ideally, the up-sampling would occur online, with our method integrated into the simulation as it
runs, replacing the baseline interpolation within an adaptive mesh codebase. However, implementing
an online approach presents additional challenges, such as the engineering effort required to integrate
our method with the NR software. These hurdles will be addressed in future research. Additionally,

2Code for higher order interpolator in Pytorch is available at https://github.com/anonymous/
anonymous.
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a drawback of our model is that the trained neural network depends on the grid spacing (dx) used
during training. Therefore, to operate across the varying spacings present in an adaptive mesh solver,
multiple grid spacings would need to be addressed. With our current methods, this would require
training separate networks for each grid spacing.

Lastly, while this paper primarily focuses on the newly introduced loss LGR, a more detailed
comparison with supervised methods, including those using L1 loss for super-resolution tasks, will
be presented in an extended version of this work.

Another promising avenue worth exploring is the area of blind super-resolution, which allows for
super-resolution without high-resolution labels or explicit degradation models (see Liu et al. [2021]
for a detailed overview).

Figure 2: Our framework (purple and
yellow) outperforms the baseline (dotted
black) by two orders of maginutude. In
NR simulations, the mass of a Black Hole
is a parameter for defining the simulation.
We evaluate the loss of the validation set in
the in-distribution scenario (purple). How-
ever, we aimed to stress-test our framework
by varying the Black Hole’s mass, enabling
us to evaluate its ability to generalize to
out-of-distribution scenarios (yellow). Re-
markably, even with a 41% variation in the
Black Hole’s mass, our framework still out-
performs the baseline.

4.1 Conclusion

In this work, we tested the applicability of deep learning techniques to numerical relativity simulations.
We showed that even without using high-resolution simulations as a ground-truth label, we could learn
an NN capable of improving the simulation’s quality using a physics-aware loss. This advancement
will help bridge the current gap in simulation fidelity needed to analyze data from next-generation
gravitational wave detectors.
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