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Abstract

Surface-enhanced Raman spectroscopy (SERS) is a potential fast and inexpensive
method of analyte quantification, which can be combined with deep learning
to discover biomarker-disease relationships. This study aims to address present
challenges of SERS through a novel SERS bio-quantification framework, including
spectral processing, analyte quantification, and model explainability. To this end,
serotonin quantification in urine media was assessed as a model task with 682
SERS spectra measured in a micromolar range using cucurbit[8]uril chemical
spacers. A denoising autoencoder was utilized for spectral enhancement, and
convolutional neural networks (CNN) and vision transformers were utilized for
biomarker quantification. Lastly, a novel context representative interpretable model
explanations (CRIME) method was developed to suit the current needs of SERS
mixture analysis explainability. Serotonin quantification was most efficient in
denoised spectra analysed using a convolutional neural network with a three-
parameter logistic output layer (mean absolute error=0.15 uM, mean percentage
error=4.67%). Subsequently, the CRIME method revealed the CNN model to
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present six prediction contexts, of which three were associated with serotonin.
The proposed framework could unlock a novel, untargeted hypothesis generating
method of biomarker discovery considering the rapid and inexpensive nature
of SERS measurements, and the potential to identify biomarkers from CRIME
contexts.

1 Introduction

Surface-enhanced Raman spectroscopy (SERS) is rapidly gaining attention as a potential fast and
inexpensive method of biomarker quantification. Broadly described, SERS signals capture vibrational
modes unique to chemical bonds within molecules, enabling the identification and quantification of
specific chemical analytes. The technique capitalizes on optical ‘hot spots’, i.e. localized regions
of intense optical fields, created by the aggregation of noble metal nanoparticles[5, 8]. These
nanoparticles offer a robust platform for in situ analysis within liquid media, rendering SERS a
practical choice for broad applications. Combined with deep learning methodology, SERS could be
utilized to elucidate complex biomarker-disease relationships.

There are a number of challenges that need to be solved to enable robust SERS-based analyte
detection. Primarily, the reproducibility and readability of spectra is limited due to biological sample
variability and noise[10]. Currently, standard practices in SERS analysis are substantially behind the
state-of-the-art machine learning approaches; however, present challenges of SERS analysis could
be effectively addressed with a robust computational framework. Additionally, there is a particular
need for improved model explainability in SERS analysis. Current general explainability methods
are capable of providing both global or individual explainations. However, SERS data often involve
multiple overlapping signals and confounding factors that can influence model predictions in subtle
ways. Therefore, there is a need for methods that can uncover these underlying contexts, helping to
differentiate between true biomarker signals, confounders, and noise. This study aims to extend the
applicability of SERS in three main directions. First, it seeks to computationally mitigate inherent
biological and method-based variations in SERS. Second, it aims to explore deep learning models
for more accurate targeted analyte quantification, and lastly, to propose a domain-specific model
explainability method capable of identifying prediction contexts in the chemical spectral analysis.

2 Methods

2.1 Dataset Preparation

The dataset assessed consisted of 318 SERS spectra measured in a lyophilized urine medium and
364 SERS spectra measured in a water medium using a 785 nm laser and cucurbit[8]uril (CB[8])
spacers (0.9nm) with 60 nm gold nanoparticles. Both urine- and water-medium samples were
spiked with epinephrine, dopamine, and serotonin, with concentrations ranging from O to 9 uM.
Serotonin was used as the target analyte. This was due to the lyophilized urine medium containing
varying endogenous concentrations of epinephrine and dopamine, resulting in their unknown absolute
concentrations. The measured SERS spectra were one-dimensional vectors containing 937 values per
spectrum, and were shortened to feature a relevant range of Raman shifts from 300 to 2000 cm™, for a
total of 842 values. The specific concentrations of the neurotransmitters in each sample are presented
in Table[T]in the appendix. Prior to assessment, spectra were processed using the asymmetric least
squares (ALS) algorithm [3]] for baseline correction with pre-specified parameters (A=1000, p=0.1,
n=10). Following the correction, the data was normalized to intensities between 0 and 1.

2.2 Neural network models

Following baseline correction and normalization, the spectra were denoised using a denoising
autoencoder. A simple denoising autoencoder was trained using full water-medium spectra consisting
of 364 spectra with 937 values using an 80:20 train-test split, with the urine background samples
incorporated as noise. Noisy data were generated using urine background data (Table [T} sample
U), where a randomly selected measurement was overlayed to each clean spectra following baseline
correction but before normalization. The quality and utility of denoised spectra was subsequently
evaluated through effects on performance in quantification models.



Two model types were applied to analyse the spectra, namely the convolutional neural network (CNN)
[6] and the vision transformer (ViT) [2], with custom SERS-specific layers evaluated for the CNN.
Both the CNNs and the ViT model were implemented in TensorFlow. A core architecture used in all
CNN models comprised of rectified linear unit (ReLu) and hyperbolic tangent (Tanh)-ReLu paired
1-D convolution layers. Three variants of the CNN were evaluated with varying additional custom
layers. These included the base CNN with a linear final activation output layer (CNNy,), a CNN with
a modified custom Three-Parameter Logistic (3PL) activation function (CNN3py,), and a CNN model
with inherent scale-adjusting capabilities through scaling layers (SCNN). The architectures of the
quantification models and the custom layers are described in detail in the appendix.

Each model was evaluated in both the raw and denoised data incorporating unseen spectra and repeat
spectra. Spectra were defined as repeat if separate measurements of the specific sample were used in
training either the denoising autoencoder or the quantification models. Repeat spectra were split to
training and validation sets with a 90:10 split, and furthermore measurements taken from an unseen
serotonin free sample (sample F) were included in the validation set. The remaining unseen samples
(D, and E) were included exclusively in the test set. Final spectra counts for both raw and denoised
datasets consisted of 218 training spectra, with a validation set of 46, and a test set of 54 spectra.

2.3 Context representative interpretable model explanations

The reliability and explainability of the final quantification model were assessed using the Context
Representative Interpretable Model Explanations (CRIME) framework, developed in this study for
machine learning interpretations of data with expected contextual prediction clusters. The CRIME
framework expands on the widely applied local interpretable model agnostic explanations (LIME)
framework[9], by assessing model explanations through contexts. Contexts can be defined within
this framework as prominent and consistent prediction explanations across a number of prediction
instances. The CRIME framework attempts to identify all prediction contexts of the input data space
through the latent space of a variational autoencoder (VAE) trained on the LIME predictions of all
instances in the available data. The LIME predictions are flattened with regards to perturbation
limits and weights prior to input and are subsequently projected to the two-dimensional latent space.
Details regarding the VAE of the CRIME method are described in the appendix. Following training
of the VAE, the latent space is utilized to identify context clusters representing all the possible
ways in which the quantification model interprets the input data. The latent space instances are
clustered into the final contexts using K-means clustering, and the latent space is visually inspected
for selecting the number of clusters. Finally, a mean LIME explanation is assessed through averaging
all instances in each cluster to represent the contexts. To identify the defining features of each context
representation, normalized LIME feature weights are combined with mean feature values representing
the spectral intensities within the context clusters. They are then set in a three-dimensional space,
together with normalized feature positions, which are then further clustered into 15 clusters using
K-means clustering. Following the clustering of mean spectral feature values, position z-scores, and
LIME weights, the clusters are ordered according to the product of their LIME weights and spectral
intensities. The five clusters with the highest score are selected to represent the regions of the spectra
which contribute most to the contextual predictions.

Following the identification of the most relevant context prediction regions, the highlighted regions of
the mean context spectra are assessed against measured clean spectra of the neurotransmitters known
to be present in the mixture. To emphasize the explanation weights in the spectra, both the reference
clean spectra and the mean context spectra are scaled according to the explanation weights in the
specific feature location. To determine the cause or identity of the recognised context clusters, the
final mean context indicators are compared to the weighted reference spectra using cosine similarity
Se.

2.4 Benchmarking

The utility of the denoising autoencoder was assessed by measuring performance in the raw and
denoised data and additionally, comparing it with fifth order polynomial second Savitzky-Golay
derivative processing with a window length of 33[4]], which was previously assessed as a reference
standard. The developed CNN architecture was benchmarked against simpler architectures without
Tanh-ReLu pairing layers. Additionally, the best-performing quantification model was assessed
against methods used previously to quantify neurotransmitter concentrations, as well as other machine



learning methods, including partial least squares regression (PLSR), random forests, support vector
machines (SVM), and extreme gradient boosting (XGBoost). The primary benchmark for serotonin
quantification accuracy is the previous study by Kasera ef al. 2014. Hyperparameter tuning was
determined using grid search and 3-fold cross validation. The searched parameters are included in the
appendix. For comparison with CRIME, feature importance and model explainability was assessed
using Logic Explained Networks (LEN)[1] and Shapley Additive Explanations (SHAP)[7]. Details
of the SHAP and LEN implementation are described in the appendix.

3 Results

3.1 Quantification models

Four different neural network models were evaluated in both raw and denoised datasets. Test set
results showed strong performance in the denoised dataset with the CNN3p;, model (mean absolute
error (MAE)=0.15 uM, mean percentage error (MPE) =4.67%) and the SCNN model (MAE=0.11 uM,
MPE=3.52%) outperforming both the ViT model (MAE=0.30 uM, MPE=8.09%) and the CNN,
model (MAE=0.30 uM, MPE=7.45%). Performance of all neural network models in both denoised
and raw datasets is visualised in Figure 1]
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Figure 1: Results of the final models in the validation and test sets for the four model types in
both raw (A) and denoised datasets (B). Validation set results are shown in grey, and test set results
are shown in color: the linear CNN model is shown in yellow (diamond), the vision transformer
model in blue (circle), the scale-adjusting CNN in green (triangle), and the three-parameter logistic
output layer CNN model in red (square). The listed values were obtained from the final test set.
Validation set results are presented in Table [2]in the appendix. MAE = mean absolute error, MPE =
mean percentage error.

3.2 CRIME framework

The CRIME framework was fit on a VAE using the LIME explanations of the CNN3p;, predictions.
This setting was selected due to its strong performance across both the validation and test data.
Following the K-means clustering, the latent space of the VAE was clustered into six contexts. Among
them, four distinct contexts were identified (contexts A, B, C, and F), as well as one intermediate
context (context E), and one outlier context (context D). The mean LIME explanations for each
CRIME context cluster are presented in Figures2A to2FF in the appendix. The peak-region cluster
plots are visualised in FiguresE]A to EF Contexts A (S¢0s=0.87), E (S.:0,5s=0.46), and F (S.,s=0.54)
were correctly associated with serotonin, while contexts B (S.,5s=0.98) and C (S.,5s=0.97) were
associated with dopamine and epinephrine, respectively. Complete cosine similarity values between
mean CRIME context spectra and reference neurotransmitter spectra are presented for each CRIME
context in Table [3]in the appendix.



3.3 Benchmarking

The neural network models were benchmarked between different architectures and against other
machine learning models, with the results summarized in Table 4] and Figure [d]in the appendix.
The PLSR model trained with autoencoder-denoised spectra showed the best performance amongst
non-neural network-based models with MAE=0.70 uM. The benchmarking results of the CNN
architectures are presented in Table [5]in the appendix. To compare the context explanations to
methods of global explainability, LEN and SHAP frameworks were evaluated as a reference standard.
The mean feature activations of the CNN3p;, model across all layers is presented in Figure [5]in
the appendix. The LEN identified logic statements explaining the four categories of serotonin
concentrations with fair (0.69, no serotonin) to excellent (0.98, medium serotonin) explanation
accuracy. The logic statements are visualized in Figures [69]in the appendix. Peak regions near
wavenumbers of 800, 1000, 1200, and 1450 cm™! were consistently selected within the first-order-
logic statements for all concentration ranges and were deemed relevant for serotonin concentration
prediction. SHAP values were assessed for all concentration ranges separately and have been
visualized on an averaged spectra in Figure[10]in the appendix.

4 Discussion

Within the present study, a comprehensive framework of spectral quantification from complex
biological media was developed. The trained denoising autoencoder improved prediction outcomes
near-universally across all model types and enabled robust quantification. The assessed neural
network models substantially outperformed traditional machine learning methods commonly used
in the SERS domain, as well as past results[4]]. The custom layers developed in the present study
for the SCNN and CNN3p7, models significantly improved quantification performance over the ViT
or the CNN,. This can be attributed to the use of logistic output activation, which can often yield a
better fit on assay data compared to linear activation, as near the limit of quantification an assay can
become saturated. Alternatively, as the values approach the limit of detection, the linearity of the
signal can deteriorate. The developed CRIME explainability method identified the spectral contexts in
which the model was reliably assessing the relevant serotonin peaks, as well as contexts representing
confounding factors or other sample artefacts, which were not readily observable from the outputs of
the LEN or the SHAP explanations. The scalability of the method should be further evaluated, as in
specific biomarker fluids such as blood, there are a significantly higher amount of analytes resulting
in further noise and potential confounding factors. Similarly, as the sample size assessed increases,
the number of LIME explanations increases significantly, resulting in potentially long runtimes. With
further developments and validation in such datasets, the CRIME framework combined with SERS
could see clinically relevant use through acting as the first step in biomarker discovery trials. The
exact identification of the signalling biomarkers from SERS is challenging when global explainability
methods are used for peak detection, as the spectral signals could be a result of multiple overlapping
compounds. However, were the CRIME framework applied, individual target biomarkers could be
identified through contexts uniquely, and subsequently assigned to the likely biomarkers through a
complete library of present compounds, as well as hypothesized biomarkers. Therefore, with further
development and validation, within the chemical spectral domain, the CRIME method promises to
enable directly identifying disease features in biological fluids, which could be further refined into
specific biomarkers through the identification of relevant contexts.

Availability of Data and Materials

The developed code for the CRIME framework can be found in the following GitHub repository:
https://github.com/jkz22/CRIME
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Appendix

A Experimental Methods

All initial reagents were sourced from Alfa Aesar and Merck and were utilized in their received state
unless otherwise specified. CB[8] was prepared following established literature protocols. Millipore
water with a resistivity of 18 M 2-cm was employed in all experiments, unless otherwise indicated.
Fresh standard stock solutions of neurotransmitters, specifically dopamine, epinephrine, and serotonin,
were prepared at varying concentrations to simulate potential interfering background analytes. Gold
nanoparticles (AuNP) with a diameter of 60 nm stabilized by citrate were procured from British
Biocell International. Lyophilized urine samples designated as Calibrator Lot No. 150 and Control
Level IT Lot No. 230 were obtained from RECIPE ClinChek-Control and were reconstituted in dilute
hydrochloric acid as per the supplier’s guide-lines.

Spectra for both Raman and SERS were collected with a 785 nm laser operating at 17.5 mW, using
an Ocean Optics QE65000 Spectrometer. Each spectrum was acquired over a 10 s interval. AuNPs
with a 60 nm diameter were first centrifuged at 12,000 rpm for 45 s, repeated twice, and 900 L
of the supernatant were removed. Subsequently, a sample preparation sequence was followed:
neurotransmitters (dopamine, epinephrine, and serotonin) were first added, followed by 50 uL. of
the centrifuged AuNPs, then 20 uL. of CB[8] at a final concentration of 20 uM, and finally, 50 uL. of
thawed urine, which had been initially stored on ice. An identical procedure was replicated, replacing
urine with water for control experiments.

Table 1: Added concentrations and number of spectra for all three neurotransmitters in both
water and urine backgrounds. *Samples D, E, and F were not present in the water dataset, and
sample M was not present in the urine dataset. Sample U represents a baseline measurement with no
added or measured concentrations of the neurotransmitters. EPI = Epinephrine, DA = Dopamine,
5-HT = Serotonin, n = number of spectra.

Sample EPI DA 5-HT Water Urine
@M) M) M) @) ()

A 2 0 0 25 22
B 0 2 0 17 21
C 0 0 2 22 22
D 3 0 7 0* 26
E 0 8 3 0* 28
F 7 3 0 0% 21
G 3 2 7 99 26
H 1 1 9 38 22
I 2 8 3 37 22
J 6 9 1 93 23
K 7 3 2 11 23
L 9 6 4 11 21
M 3 3 3 11 0*
8] 0 0 0 58 41

B Neural networks

The denoising autoencoder was implemented in TensorFlow. The encoder comprises two dense layers.
The first layer has 2x200 units and utilizes a ReLLU activation function. The second layer further
compresses the data into an encoding space of dimension 200, with ReL.U activation. Symmetric
to the encoder, the decoder also consists of two dense layers. The first layer expands the encoded
data back to 2x200 dimensions using ReLU activation. Finally, the second layer reconstructs the data
to its original dimension using a sigmoid activation function. The model was compiled using mean
squared error (MSE) as the loss function and optimized using the Nesterov-accelerated Adaptive
Moment Estimation (Nadam) optimizer. Training was conducted for 128 epochs with a batch size of
32. Both training and testing was performed on noisy data to facilitate the denoising objective.



Both the CNNs and the ViT models were implemented in TensorFlow and designed to adapt to
SERS spectral data. The CNN architecture comprised sequential layers optimized for 1D convolution
operations, and the core CNN architecture was used in all trained CNN models, where the initial
layer is a convolutional layer featuring 8 filters and a large kernel size approximately the width of
half a peak (25 values), aimed to capture broader features in the spectrum. This initial layer employs
a Rectified Linear Unit (ReLU) activation function and reduces sequence length through striding.
Intermediate layers employ paired hyperbolic tangent (Tanh) and ReLU activation functions, designed
to capture complex patterns while maintaining non-linearity. The combination of consequential Tanh
and ReLu layers is to direct the model to assess the upper half of the identified general peaks from
the sweeper layer. These layers maintain the same padding to avoid changes in sequence length. The
model contains two Tanh-ReLu paired layers with 2x16 and 2x32 filters respectively, with a filter
size of 9. The final convolutional stage employs 64 filters with a smaller kernel size of 2 using ReLU
activation, aimed to capture fine-grained details in the data. Subsequently, the data is flattened and
passed through two fully connected layers employing the same Tanh to ReLu structure with 32 and
16 nodes respectively, to serve the regression task. The core architecture of the CNN models was
benchmarked against similar architectures with Tanh-ReLu pairs replaced with ReLu pairs, inversed
ReLu-Tanh pairs, or single ReLu layers. Each of the benchmark architectures were trained and
validated as described in the methods section, and the results are summarized in Table[5]

The scale-adjusting CNN model was developed with two unique scaling layers implemented. These
were a multi-scale assessing layer, and a local scaling layer. Both layers were utilized prior to the
half-peak ReLu layer in the core CNN architecture. The multi-scale layer captures features from the
input X, with three layers sized 8, 25, and 50, each with 8 filters. Each convolutional operation is
defined as C;(X) = W; *« X + b;, where * denotes a convolutional operation, TV the weight, and b
the bias. To assess the spectra at different scales simultaneously, the output of each convolutional
layer is combined following the convolutional operations along the feature dimension. The local
peak scaling layer in turn was developed to scale regions of the spectra which were assessed not to
be relevant to the outcome variable, identified from the reference spectra of the pure compounds in
water. The layer applies a set of scaling factors s; unique to the number of pre-registered regions of
interest (or non-interest), which are defined by start and end indices a;, b;, in the spectra. The scaling
operation for each region is expressed as: S;(X) = X5 © 55, where © denotes the element-wise
multiplication. The output of the scaling operation is concatenated to reconstruct the spectra with
scaled regions. The modified output layer assessed in both custom layer CNN models utilizes a
Three-Parameter Logistic (3PL) activation function. The ViT architecture in turn consisted of an
embedding layer with a patch size of 25 matching the CNN architectures initial layer, with a hidden
size of 64 and a dropout rate of 0.1. Subsequently, the architecture consisted of 6 transformer blocks
with 6 multi-head perceptron’s. The transformer blocks each employed Gaussian Error Linear Unit
(GELU) activation functions.

Hyperparameter tuning and architecture search for both the CNN variants and the ViT was conducted
iteratively, guided by the model’s performance on the validation set. Each model variant for both the
CNNs and the ViT was trained 100 times, with an ensemble average used for evaluation. Both model
types were optimized using the Adaptive Moment Estimation (Adam) algorithm with a learning rate
of 0.001, a batch size of 64, and 256 epochs, and compiled with a mean absolute error (MAE) loss
function. Additional evaluation metrics included MSE and mean percentage error (MPE). Early
stopping with a patience of 64 was employed to mitigate overfitting, and model checkpoints were
saved for epochs that minimized validation loss. Reproducibility was ensured by setting random
seeds for TensorFlow, NumPy, and the train-test split. Of the 100 trained models in the ensemble, the
model with the lowest MAE in the validation set was selected as the final model, which was assessed
in the holdout test set.

Table 2: Validation set results for neural network models. SCNN = convolutional neural network
with scaling layers and three parameter logistic (3PL) output layer, CNN3p, = convolutional neural
network with 3PL output layer, CNN, = convolutional neural network with linear output layer, ViT
= vision transformer.

Dataset CNN3;pr, CNN; sCNN ViT
Denoising Autoencoder 0.24 0.13 0.33 0.20
Raw Spectra 0.19 0.31 0.14 0.25




C CRIME variational autoencoder

The VAE architecture used in this study consisted of a simple encoder, sampler, and decoder, however
the architecture can be fine-tuned depending on the individual requirements for the CRIME framework
in future applications. Within the encoder of the CRIME VAE, the input data X, is transformed
into the mean (;¢) and logarithm of the variance (log(c2)) in a proposed Gaussian distribution in the
latent space through a fully connected ReLu layer with 256 nodes. During training, the outputs of the
encoder are passed to a sampling layer which generates a random noise variable € generated from a
standard gaussian distribution, which is then transformed using the encoder outputs to draw samples
z as such: z = u + o * €. The decoder then applies a mirrored dense layer network to the encoder
with a ReLu layer with 256 nodes, and a final output sigmoid layer with 3x842 nodes. The model was
trained for 128 epochs and a batch size of 32, with the Adam optimizer with a learning rate of 0.001
and using the sum of the mean squared error, and Kullback-Leibler divergence as the loss function.
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Figure 2: Results for Context Representative Interpretable Model Explanations (CRIME)
analysis. Six distinct contexts were identified, which are visualized across mean spectra in subfigures
A - F. Positive prediction weights are presented in green, negative prediction weights in yellow, and
perturbation limits have been shaded in teal. Red regions in the mean spectra correspond to average
perturbation limits at either the top or bottom of the feature weight range for the simplicity of the
plot. Latent spaces are visualized by context and concentrations, and compound similarity matching
was done using cosine similarity. The highest similarity score is presented alongside the matched
compound.
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Figure 3: Peak-region clusters of high relevance extracted from CRIME contexts for compound
identification. Context labels correspond to labels in Figure[2] Areas not relevant are marked in
black. High-relevance clusters were obtained with K-means clustering of the product of peak height
and LIME weights, with the top 5 largest clusters selected.

Table 3: Cosine similarity values across explanation weighted reference spectra and explanation
weighted mean context spectra. Highest similarity values within a context cluster are bolded. X =
context.

Reference compound A B C D E F

Serotonin 0.87 0.85 0.60 -0.79 046 0.54
Dopamine 0.05 098 091 -0.80 0.29 0.06
Epinephrine 00 081 097 -079 0.12 0.08
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D Benchmarking

D.1 Quantification model benchmarks
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Figure 4: Results for quantification model benchmarking. Training set predictions are marked in
black (cross), validation set predictions in orange (triangle), and test set predictions in blue (circle).
XGB = extreme gradient boosting, RF = random forests, PLSR = partial least squares regression,
SVM = support vector machine regression, SG = Savitzky-Golay filter.

The grids used for the hyperparameter search of the benchmark machine learning models are presented
below with the final hyperparameters for the denoised models in bold.
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XGBoost

Hyperparameter ~ Values

colsample_bytree 0.5, 0.7, 0.8

learning_rate 0.01, 0.1, 0.2, 0.3
max_depth 3,6,9,12

alpha 1,3,5

n_estimators 100, 300, 600, 900, 1200

Random Forests

Hyperparameter  Values

max_depth 1,2,3,6,7,8, 10
n_estimators 100, 300, 600, 900, 1200

PLSR

Hyperparameter ~ Values

n_components 5,8,12

SVM

Hyperparameter  Values

C 0.1, 1, 10, 50, 100
epsilon 0.01,0.1, 1
gamma scale, auto

Table 4: Comparison of test-set mean absolute errors across different machine learning models
for serotonin quantification from SERS spectra. Best performing model MAEs within each
dataset has been bolded, and the two best models overall have been marked with an asterisk (*).
Additionally, for baseline comparison, the mean absolute error of the previously published PLSR
model has been presented. SCNN = convolutional neural network with scaling layers and three
parameter logistic (3PL) output layer, CNN3p;, = convolutional neural network with 3PL output
layer, CNN, = convolutional neural network with linear output layer, SVM = support vector machine,
RF = random forests, PLSR = partial least squares regression, XGB = extreme gradient boosting, ViT
= vision transformer.

Dataset XGB PLSR RF SVM CNN;3pr, CNNp sCNN ViT
Denoising Autoencoder (.78 0.70 093 0.96 0.15* 0.30 0.11*  0.30
Raw Spectra 082 205 088 1.26 1.14 0.70 095 1.17
Savitzky-Golay 1.15 2.25 146 137 - - - -
Kasera et al. 2014 - 0.52 - - - - - -

Table 5: Comparison of core CNN architectures. All architectures were trained on denoised urine
medium datasets, and validated using the holdout test set. ReLu = Rectified linear unit, Tanh =
Hyperbolic tangent, MAE = Mean absolute error, MPE = Mean percentage error.

Error Tanh-ReLu ReLu-Tanh 2xReLu ReLu

MAE 0.30 0.56 0.88 0.78

MPE 7.45 17.68 20.71 16.61
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D.2 Logic explained networks and Shapley additive explanations

The LEN was implemented using PyTorch in python. In order to apply the LEN, the spectral input data
was sectioned to discrete categories, and concept mapping was done through taking the mean of the
min-max scaled feature map activations across each layer of the model. Each concept corresponded
to approximately 25 x-axis points across the SERS spectrum corresponding to approximately half a
peak. The LEN architecture was modified to be similar to the original model architecture, consisting
of an entropy layer with 164 input nodes, a leaky ReLu layer with 32 nodes, a Tanh layer with 16
nodes, a ReLu layer with 4 nodes, and a final linear output layer. The LEN was trained using weight
decay Adam as the optimizer, using binary cross entropy with logits loss as the loss function with a
scaled auxiliary entropy loss at a 0.000001 multiplier. The model was trained with 5001 epochs using
a learning rate of 0.0001.

SHAP calculations were done using the above-mentioned sectioned categories separately using
Gradient Explainer.
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Figure 5: Feature activation map for each convolutional layer in the CNN model overlayed with
an example spectra. SERS spectra is shown in red, and higher activations are marked with a yellow
hue, with lower activations marked in blue.
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Figure 6: LEN results visualized for samples with no serotonin concentration. OR statements
are separated vertically, and AND statements are presented level with a dashed line connecting the
statements. Blue squares denote lower activation and red squares higher activation.
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Figure 7: LEN results visualized for low serotonin concentrations. OR statements are separated
vertically, and AND statements are presented level with a dashed line connecting the statements. Blue
squares denote lower activation and red squares higher activation.
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Figure 8: LEN results visualized for medium serotonin concentrations. OR statements are
separated vertically, and AND statements are presented level with a dashed line connecting the
statements. Blue squares denote lower activation and red squares higher activation.
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Figure 9: LEN results visualized for high serotonin concentrations. OR statements are separated
vertically, and AND statements are presented level with a dashed line connecting the statements. Blue
squares denote lower activation and red squares higher activation.
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Figure 10: Shapley additive explanations (SHAP) visualized for all serotonin concentration
ranges. Spectra shown are mean spectra across the respective concentration ranges. SHAP values
were obtained using Gradient Explainer, and red areas correspond to positive SHAP values and blue

areas to negative SHAP values.
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