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Abstract

The mergers of binary compact objects are of central interest to several areas
of astrophysics, including as the progenitors of short gamma-ray bursts (GRBs).
Dozens of GRBs have been confidently associated with rapidly-decaying optical
transients (“afterglows”) and more recently with late-time emission, such as from a
kilonovae. Traditional methods for modeling these phenomena are computationally
expensive for comparison and parameter inference because of the high-dimension
parameter space. We propose using Simulation-Based Inference (SBI) as a fast
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and scalable alternative to conventional likelihood-based approaches. Preliminary
results using SBI to fit multi-wavelength light curves of GRB 230307A across
different emission models, highlight its efficiency in managing high-dimensional
parameter space and show that SBI yields posterior distributions consistent with
those from likelihood-based methods, while significantly reducing computational
time from 110 hours to just 5 hours. This is a significant saving that can allow for
more exhaustive model comparisons in future works.

1 Introduction

A gamma-ray burst (GRB) is a highly energetic (> 1050 erg) explosion characterized by a brief
(seconds-long) but intense burst of gamma rays. GRBs are classified into two main categories:
long-duration GRBs (LGRBs), which generally result from the collapse of massive stars, and short-
duration GRBs (SGRBs), which are associated with the mergers of compact objects ([1]). Although
the traditional classification typically divides the GRBs population at a gamma-ray duration of 2 s,
recent observations have revealed intriguing exceptions to this. For instance, the LGRBs 211211A
and 230307A have been linked to a kilonovae, indicating that such bursts may arise from compact
object mergers despite their long duration ([2, 3]). Therefore, the merger of two compact objects,
including neutron star/black hole, binary neutron star, and white dwarf/neutron star merger can give
rise to a GRB and a short-lived thermal transient ([4, 5]). In this context, Bayesian inference and
model selection applied to observational data can offer valuable insights into the GRB emission
mechanisms and progenitor system.

Traditional Bayesian inference methods, such as Markov Chain Monte Carlo (MCMC) and nested
sampling, have been employed to fit physical models to GRB observations. These methods, however,
can, depending on the complexity of the model, take between tens of minutes to several days on
a single CPU to sample the posterior, particularly when dealing with high-dimensional parameter
spaces ([6]). The rapid advancements in computational resources have significantly expanded the
availability of models for kilonovae, supernovae, and other thermal emission mechanisms ([7, 8]),
which are used to model the additional optical excess beyond standard GRB afterglows models. As
these models become more detailed, the increasing number of parameters creates challenges for
efficient inference and model selection due to high computational costs to compute the likelihood. To
address these challenges, we investigate the application of Simulation-Based Inference (SBI; [9]),
a likelihood-free approach, to rapidly estimate the posterior distribution p(θ|x) of GRB physical
properties in a high-dimensional parameter space. Here, θ denotes the model parameters for the
combined afterglow and kilonova models and x represents the observed light curves (LCs).

SBI has gained traction in various fields, such as galaxy evolution ([10]), gravitational waves ([11]),
and cosmology ([12]), but its application to GRB science remains underexplored. While recent work
has applied amortized inference to kilonova spectral data ([13]) and likelihood-free inference to
kilonova light curves ([14]), these studies have been limited to optical kilonova observations with low
number of free parameters (N<10).

Here, we present the first application of SBI to model both afterglow and kilonova emissions,
incorporating multi-wavelength data from both infrared and optical bands. We further compute model
evidence within the SBI framework ([15]), leveraging a harmonic mean estimator ([16]) to enable
efficient Bayesian model comparison across multiple emission models. We validate our approach
using data from the GRB 230307A event, comparing it to traditional inference techniques.

This paper is structured as follows: Section 2 describes the kilonova and GRB forward shock models;
Section 3 outlines the SBI methodology used for parameter estimation and Bayesian model selection;
Section 4 provides details on the training procedure and compares the results with traditional methods
for the GRB230307 event; Finally, Section 5 discusses the implications of the study and potential
directions for future work.

2 Multi-wavelength afterglow and kilonovae modelling

To model the multi-wavelength counterpart of GRB230307A, we employ a combined afterglow and
kilonova model. The first component describes the non-thermal synchrotron emission from the GRB’s
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forward shock interacting (FS) with the surrounding medium ([17]). To model the FS emission, we
used the Python package afterglowpy ([18]), which includes the following free parameters: the
isotropic-equivalent kinetic energy E0, the circumburst density n0, the fraction of burst kinetic energy
in magnetic fields (ϵB) and in electrons (ϵe), the power-law slope p of the electron energy distribution,
the jet core’s opening angle θc, and the electron participation fraction ξN . The second component
is an isotropic kilonova model from [19], which assumes a gray opacity and models the spectrum
using a simple blackbody function. The free parameters for this model are the ejecta mass (Mej), the
minimum velocity of the ejecta (vej), the velocity index (βv), opacity (κ), and electron fraction (Ye).

We fit the multi-wavelength data using three distinct models: (1) a forward shock model (FS), (2) a
forward shock combined with a one-component kilonova (FS+1KNE), and (3) a forward shock plus a
two-component kilonova (FS+2KNE). These analytical models serve as "simulators" in our framework,
with uniform priors chosen for all parameters following the values reported in [5].

3 Methodology and Data

Figure 1: Afterglow and kilonova models fit to
observations of the GRB230307A counterpart:
The Light curves for each model were generated
using the median values of the inferred posterior
distributions. The solid thin lines are generated
from 100 parameter sets randomly sampled from
the FS+2KNE inferred posterior distribution. It
was adopted an offset of -10.

Parameter Inference: For a rapid parameter
inference, we employ Truncated Sequential Neu-
ral Posterior Estimation (TSNPE; [20]) with a
Mixture Density Network (MDN; [21]) as the
density estimator and an embedding network
as the feature extractor. TSNPE is a modified
version of SNPE ([22]), which is part of the
family of SBI techniques. SNPE employs a
multi-round adaptive inference strategy, where
model parameters are sampled from an updated
proposal distribution—an approximate poste-
rior—generated in previous inference rounds
(illustrated by Fig.2). This adaptive sampling
improves posterior accuracy for a specific ob-
servation, which in this case corresponds to the
GRB230307A event. Truncated SNPE intro-
duces an additional truncation step that rejects
parameter samples outside the current posterior
approximation. This ensures only parameters
within the posterior’s support are simulated, in-
creasing inference efficiency by concentrating
computational resources on regions more likely
to yield an accurate posterior.

The MDN is used to model the posterior distribu-
tion as a mixture of Gaussian distributions. Al-
though we tested other density estimators such
as Normalizing Spline Flow and Masked Au-
toregressive Flow ([23]), MDN demonstrates
superior precision. To further improve the infer-
ence accuracy, an embedding network is used
to extract features from the observational data.
The main purpose of the embedding network is
to transform the raw observational data into a
representation that is more informative for the in-
ference task. Our embedding network processed
the input observations by separating them into

early-phase and late-phase (>7 days) segments. Each segment was passed through a distinct fully
connected neural network with 3 layers, with outputs from both phases combined in a final layer with
128 neurons. We evaluated various embedding network architectures and density estimations, finding
that this configuration provided the most precise constraints.

Bayesian Model Selection: As shown by [15], Bayesian model selection is a natural extension of
parameter inference in the context of SBI. In addition to inferring model parameters, SBI can be
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Figure 2: Inference pipeline using SNPE and SNLE — Sequential inference enables rapid convergence
by focusing on a more informative region of the parameter space. In the training phase, a neural-
network-based density estimator (MDN) learns the probabilistic relationship between the model’s
parameters (θ) and “simulated” light curve (X). Then, in the inference phase, the trained density
estimator takes the observed real data (Xobs; GRB 230307A) as input and infers the posterior
distribution of the parameters, which is used as prior to the next round.

used to compare different models by computing the model evidence (also known as the marginal
likelihood). The model evidence allows one to compute the Bayes factor, a ratio of the evidence
of two competing models, which provides a way to assign relative probabilities to models given
the observed data. Traditionally, fast and accurate estimation of Bayesian model evidence in a
likelihood-based method poses significant computational challenges. This process requires solving
a high-dimensional integral, which can become infeasible for parameter spaces of even moderate
dimensionality.

In order to compute the model evidence, we adopt the learned harmonic mean estimator (LHME;
[16]), which uses samples drawn directly from the surrogate posterior produced by the TSNPE. The
application of LHME, however, requires evaluating the likelihood function at the sampled parameter
positions. In many SBI settings, the likelihood function is either intractable or computationally
prohibitive to evaluate directly. To overcome this, we trained a Neural Likelihood Estimation (NLE;
[24]) to provide a surrogate likelihood function. Therefore, this approach involves training two
density estimators at the same time, NLE and NPE, under the identical sequential training setup.
For the LHME, we adopted the Rational quadratic spline normalizing flow model, with 80% of the
samples being used to train the NF for 200 epochs.

Data: In this analysis, we utilize the dataset detailed in [5]. GRB230307A was detected by the Fermi
Gamma-ray Burst Monitor on 7 March 2023. Its dataset includes extensive follow-up observations
across multiple wavelengths: optical and near-infrared data from the Gemini South telescope and the
Very Large Telescope, X-ray data from the Swift X-ray Telescope and Chandra X-ray Observatory,
and radio data from the Australia Telescope Compact Array and MeerKAT. The James Webb Space
Telescope (JWST) observations were initiated on 5 April 2023, with six-color imaging performed
with the Near Infrared Camera (NIRCam) at +28.4 days after the GRB. For our current analysis, we
focused exclusively on the optical and near-infrared observations. Future work will extend our fit to
incorporate radio and X-ray observations as well.

4 Results and Discussion

We compare the performance of the FS+2KNE model against traditional MCMC method using both
qualitative and quantitative analyses. The FS+2KNE model is chosen as the fiducial model due to
its capacity to incorporate additional kilonova emission components and the complexity introduced
by its 17 free parameters. In addition, we calculate the Bayesian evidence for the three models (FS,
FS+1KNE, and FS+2KNE) using the learned harmonic mean estimator. We anticipate that FS+2KNE
will yield the highest evidence, indicating a better fit to the observational data due to its ability to
capture more complex physical processes ([5]).
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Training Setup: We trained the TSNPE and SNLE models over 10 rounds with a minimum of 600
epochs per round, each involving 10,000 simulations. We used the posterior distribution from the
NPE method as the proposal distribution because it’s faster to sample directly from the NPE than
from the NLE. The total training time for the FS+2KNE model was under 5 hours using 80 CPUs. In
contrast, an MCMC approach was estimated to require over 110 hours with comparable computational
resources. For comparison, we initialized an MCMC run using the most probable parameter values
obtained from the TSNPE method and executed it for 5,000 steps with 100 walkers (referred to as
MCMC FS+2KNE), which took 52 hours to complete. Additionally, we trained a TSNPE model under a
low simulation budget of 100 simulations for each round, achieving comparable precision for most
parameters in under 30 minutes. This improvement in performance could allow for an exhaustive
search of the parameter space and extensive model comparisons within a feasible timeframe, even
with a limited CPU budget.

Parameter Retrieval: Fig.3(a) shows that the inferred posterior distributions for the FS+2KNE
model align well with both the likelihood-based method from [5] and MCMC FS+2KNE approach, with
median values falling within the one sigma interval. Similar consistency is observed in the FS+1KNE
model, with median values agreeing within one sigma. Notably, we observe larger uncertainties in
parameters such as E0 and p, which may stem from our use of uniform priors, in contrast to the
truncated-Gaussian prior adopted for the electron index p in [5].

(a) (b)

Figure 3: Results for a forward shock plus two-
component kilonova model: (a) Corner plot of
the inferred GRB parameters for the GRB230703A
at 10%, 32%, 68%, and 95% confidence intervals.
The median and 68% confidence are shown by
vertical solid and dashed lines, respectively, and
reported above each column. The results from [5]
(blue solid line) are also shown for comparison.
Due to the size of the parameter space, we only
display the first two components of the FS+2KNE
model, the full image is displayed in the Appendix
section. (b) The prior bounds and inferred poste-
rior medians for the FS+2KNE model.

As shown in Fig. 3(b), SBI effectively con-
strains key parameters like ϵB , ϵe, βv and Ye,
performing similarly or better than traditional
methods. Despite some larger uncertainties in
parameters such as E0 and Mej , SBI remains
accurate while significantly reducing computa-
tional time – 28 minutes, for the low budget
inference, compared to over 110 hours with
MCMC.

Bayesian Model Comparison: Using samples
from TSNPE and the surrogate likelihood from
SNLE, we estimate model evidences with the
LHME methodology [15]. The evidence in-
creases with the number of model components,
aligning with theoretical expectations due to ad-
ditional kilonova emission in FS+2KNE. Fig. 1
visually confirms these results. It shows LCs
computed from the most probable parameters for
each model, compared with GRB230703A data
across ten photometric bands. The FS+2KNE
model provides the best fit to the observational
data, outperforming the FS and FS+1KNE mod-
els.

Discussion: Despite being a preliminary result,
this work showcases the efficiency and scala-
bility of SBI for modeling GRB afterglows and
kilonovae in high-dimensional parameter spaces.
By generating posterior distributions and en-
abling model comparisons with observational
data in less than 5 hours, SBI offers a scalable
alternative to traditional inference techniques,
allowing for broader model coverage and a more comprehensive characterization of the progenitor
system, even with a limited CPU budget. Future directions include expanding the analysis to consider
more complex kilonova models, such as those involving three-component emission profiles ([8]), and
applying this approach to additional GRB events [25]. Moreover, we plan to utilize observations from
X-ray and radio to further enhance model precision and to explore alternative inference approaches,
including Bayesian neural networks (BNN), to improve performance and scalability. The code used
to perform the experiments presented in this paper is openly available in our GitHub repository:
NeurIPS-2024-GRB-SBI
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A Appendix

Table 1: Parameter Priors and Posteriors for the FS+2KNE model
Parameter Prior Posterior TSNPE Posterior MCMC Posterior Yang et al. 2024

FS
log E0 (erg) (50,60) 54.10+2.47

−2.56 52.06+0.94
−1.57 53.87+1.34

−1.36

log n0 (cm−3) (-6,2) −2.16+2.12
−2.02 −3.67+1.57

−1.67 −4.11+1.55
−1.20

log θc (rad) (-2,-0.5) −1.27+0.48
−0.39 −1.03+0.42

−0.31 −1.38+0.29
−0.27

log ϵe (-6,-0.3) −3.34+1.50
−1.43 −2.65+0.84

−0.65 −2.90+1.51
−1.36

log ϵB (-6,-0.3) −3.27+1.50
−1.43 −3.71+1.81

−1.16 −3.96+1.57
−1.34

p (2.01,2.9) 2.46+0.22
−0.28 2.41+0.42

−0.12 2.64+0.05
−0.05

log ξN (-5,0) −2.59+1.35
−1.58 −2.32+0.78

−0.43 −3.19+1.23
−1.13

2KN
log Mej,1 (M⊙) (-3,-1) −2.01+0.50

−0.50 −1.06+0.05
−1.06 −1.56+0.14

−0.12

log vej,1 (c) (-1,-0.5) −0.75+0.15
−0.13 −0.78+0.08

−0.07 −0.72+0.13
−0.17

log κ1 (cm2 g−1) (-2,0.5) −0.74+0.63
−0.77 −1.34+0.42

−0.50 −0.24+0.26
−0.27

βv,1 (1,5) 2.98+1.05
−0.99 3.05+0.93

−0.83 3.09+1.14
−1.15

Ye, 1 (0.2,0.4) 0.30+0.05
−0.05 0.30+0.06

−0.07 0.30+0.06
−0.06

log Mej,2 (M⊙) (-3,-1) −1.99+0.50
−0.50 −1.01+0.01

−0.01 −1.28+0.07
−0.06

log vej,2 (c) (-2,-1) −1.50+0.25
−0.26 −1.19+0.17

−0.05 −1.51+0.08
−0.09

log κ2 (cm2 g−1) (-0.5,2) 0.76+0.66
−0.78 1.65+0.16

−1.74 1.66+0.22
−0.29

βv,2 (1,5) 3.03+1.09
−1.05 3.18+0.82

−0.64 2.25+1.01
−0.85

Ye, 2 (0.1,0.2) 0.15+0.03
−0.03 0.15+0.04

−0.03 0.15+0.03
−0.03
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Figure 4: Enhanced version of Figure 2.
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Figure 5: Results for a forward shock plus two-component kilonova model in a low-budget simulation
regime.
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