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Abstract

Predictive numerical simulations of energy conversion systems involving reacting
flows are accompanied by high computational cost of solving a system of stiff
ordinary differential equations (ODEs) associated with detailed fuel chemistry.
This bottleneck becomes more prohibitive for complex hydrocarbon fuels with
an increase in the number of reactive species and chemical reactions governing
chemical kinetics. In this work, a physics-informed Autoencoder (AE)-neural ODE
framework (known as Phy-ChemNODE) is developed for data-driven modeling
of stiff chemical kinetics, wherein a non-linear autoencoder (AE) is employed
for dimensionality reduction of the thermochemical state and the NODE learns
the temporal evolution of the dynamical system in the latent space obtained from
the AE. Both the AE and NODE are trained together in an end-to-end manner.
We further enhance the approach by incorporating elemental mass conservation
constraints directly into the loss function during model training. Demonstration
studies are performed for methane-oxygen combustion kinetics (32 species, 266
chemical reactions) over a wide thermodynamic and composition space at high
pressure. Effects of model hyperparameters, such as relative weighting of different
terms in the loss function and dimensionality of the AE latent space, are assessed
on the accuracy of Phy-ChemNODE. A posteriori autoregressive inference tests
show that Phy-ChemNODE achieves 1-3 orders of magnitude speedup relative
to the methane-oxygen chemical mechanism depending on the type of the ODE
solver (implicit or explicit) used, while ensuring prediction fidelity and mass
conservation.

1 Introduction

Computational fluid dynamics (CFD) modeling of reacting flows, such as those encountered in
gas turbine combustors and piston engines, are computationally demanding due to the complex
interactions among multiple physico-chemical phenomena and the need to resolve a wide range of
spatiotemporal scales governing the evolution of a large number of reactive scalars (chemical species).
Of these, modeling of detailed chemical kinetics presents a major bottleneck, which is governed by a
stiff system of coupled ordinary differential equations (ODEs) and characterized by high condition
number of the corresponding chemical Jacobian matrix [1].
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Figure 1: Schematic of the coupled AE-NODE framework.

Data-driven approaches ([2, 3, 4]) have become mainstream in an effort to emulate chemical kinetics
and accelerate the associated detailed chemistry computations. In particular, deep learning based
approaches have been commonly used for predicting chemical source terms from the thermochemical
state ([5, 6, 7]) in an a priori sense, where the networks are trained in an offline manner to predict
the source terms and later coupled with ODE solvers. An alternative and more robust technique
for source term computations, first developed at Argonne National Laboratory, is based on neural
ODEs and known as ChemNODE ([8, 9, 10, 11, 12]). It combines the source term predictions with
ODE integration in an a posteriori learning paradigm, where the source terms predicted by the neural
network are passed to the ODE solver, and the neural network weights are optimized to minimize the
loss computed between the predicted and ground truth thermochemical states (comprised of species
mass fractions and thermodynamic variables). This neural ODE (NODE) framework ensures that the
obtained solution vectors, even after a long-time horizon, remain adherent to the ground truth solution
trajectory. In more recent studies, the neural ODE based framework for chemical kinetics was further
extended by incorporating mass conservation constraints[11] directly into the loss function during
training, similar to PINNs [13]. This ensures that the total mass and the elemental mass are conserved.
For relatively larger chemical mechanisms, the coupling of a non-linear autoencoder (AE) to perform
dimensionality reduction and a neural ODE to evolve the dynamics in the lower-dimensional latent
space has shown promise ([12]).

In the present work, the AE-NODE framework (Figure 1) is trained with mass conservation laws
embedded within the loss function as additional constraint terms, and the effectiveness of the physics-
constrained framework (Phy-ChemNODE) is highlighted. Both the AE and NODE are trained in
an end-to-end manner. Demonstration studies are presented for methane-oxygen chemical kinetics,
and it is shown that mass conservation constraints improve the physical consistency of the resulting
data-driven model, and result in more efficient training process and robust predictions.

2 Physics-Constrained Autoencoder-NODE (Phy-ChemNODE) Framework
for Stiff Chemical Kinetics

In combustion CFD simulations, it is a common numerical approach to decouple the chemistry
from transport using operator splitting. The chemistry is solved (independently from advective
and diffusive transport) within each computational grid cell considered as a homogeneous reactor,
which is equivalent to solving a system of stiff ODEs. The temporal evolution of Ns reactive scalars
(chemical species) can be defined by:

dYk
dt

=
ω̇k

ρ
, k = 1, 2, 3, ..., Ns (1)

where Yk is the mass fraction of specie k (Ns being the total number of species), ω̇k is the correspond-
ing chemical source term computed using law of mass action, and ρ refers to density. The temporal
evolution of temperature is also governed by an ODE similar to Eq.(1). To calculate these source
terms, one needs to account for several elementary reactions involving production and consumption
of multiple species. As the chemical mechanism becomes larger, the number of chemical species and
reactions also increase [14]. This leads to prohibitive computational costs since all chemical time
scales must be fully resolved. In the NODE-based data-driven framework, the expensive physics-
based computation of chemical source terms is replaced by a neural network, which can be described
as:

dΦ

dt
= f(Φ, t; Θ) (2)
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Figure 2: Comparison of loss terms (on validation set) across hyperparameter experiments: a) varying
λz , b) varying latent space size (dim(z)), and c) data loss (Ldata) evolution with (λel−j = 0.5) and
without (λel−j = 0) elemental mass constraints.

where Φ = [T, Y1, Y2, . . . , YNs] is the vector of thermochemical state (temperature and species mass
fractions), and f(Φ, t; Θ) is a neural network parameterized by weights Θ. For larger chemical
mechanisms, Φ increases in dimensionality and stiffness. To alleviate this, an AE is coupled with
the NODE [12] for dimensionality reduction, so that the NODE learns the temporal evolution of the
dynamical system in a reduced-order latent space obtained from the AE. The data-driven learning
process is posed as an optimization problem of determining the optimal network parameters of the
encoder (φ), NODE (h(z)), and the decoder (ψ), that minimize the loss function defined as:

LPhy−ChemNODE = λrecLrec + Ldata + λzLz +

Nel∑
j=1

λel−jLel−j (3)

where the reconstruction loss Lrec = L(Φ, Φ̃) measures the loss between ground truth (Φ) and
corresponding encoder-decoder mapping (Φ̃ = ψ(φ(Φ)), the data loss Ldata = L(Φ, Φ̂) measures
the loss between ground truth and encoder+NODE+decoder prediction (Φ̂), and the latent loss Lz =
L(z̄, z) measures the loss between encoder mapping of ground truth (z̄ = φ(Φ)) and encoder+NODE
prediction. Each of these loss terms is chosen to be in mean absolute error (MAE) form. Lastly, L
also contains the elemental mass conservation constraints [15], defined as follows:

Lel−j =
1

N

N∑
i=1

Ns∑
k=1

Nk
j Wj |Yk,i − Ŷk,i|

Wk
(4)

where Lel−j refers to the loss associated with mass conservation of element j (in the chemical system
with a total of Nel elements). Ŷk,i and Yk,i correspond to the AE+NODE predicted and ground truth
mass fractions of kth specie, respectively. Wj is the atomic mass of element j, Nk

j is the number of
atoms of element j in kth specie, Wk is the molecular weight of kth species, and N is the number of
training data points. Lastly, the weights λrec, λz , and λel−j in Eq. (3) balance the contributions from
the different loss terms detailed above.

3 Experiments

For proof-of-concept demonstration of Phy-ChemNODE, an auto igniting methane-oxygen (CH4-
O2) homogeneous 0D reactor at constant pressure of 20 atm is considered. The detailed chemical
mechanism [16] consists of 32 species and 266 chemical reactions. The ground truth data for model
training is generated using Cantera [17], which solves the coupled ODE system (Eq. (1)). The
thermodynamic and composition space chosen for data generation comprises 9 equispaced initial
temperatures in the range Ti = [1600 K, 2000 K] and 11 equivalence ratios within ϕ = [1.0, 1.5]
resulting in a total of 99 initial conditions. Each of these initial conditions is integrated to chemical
equilibrium, and the thermochemical state solution is saved at 200 points in time. A 70%, 20%, 10%
random split (based on initial conditions) is used to obtain the training, validation, and test datasets,
respectively. The data-driven model is initialized with the same initial conditions (during training) as
the physics-based simulations. The input to the encoder is the vector Φ containing the temperature
(T ) and species mass fractions (Y ), which is scaled using the maximum and minimum of the training
data, respectively, and the output is a vector in the latent space (z). The decoder has the same dense
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architecture as the encoder, with an input size equal to the latent dimension (dim(z) = 4) and the
output size equal to the physical space vector (dim(Φ) = 33). Both the encoder and decoder have
5 hidden layers with 64 neurons each and Exponential Linear Unit (ELU) activation function. The
NODE has the same input and output dimensions as the latent space (dim(z) = 4), and a 4 hidden-
layer dense network with 64 neurons in each hidden layer with ELU activation function, to model the
chemical source terms in the latent space. The output layers for the encoder, NODE, and the decoder
are considered to be linear. The forward pass through the NODE requires time integration, for which
a 4th order explicit Runge-Kutta (RK) solver from Julia’s DifferentialEquations.jl library [18] is used.
Once the time integration is completed, the trajectories are mapped back to physical space and the loss
is computed using Eq.(3). The gradients for updating the neural network parameters are calculated
using backward adjoint automatic differentiation and ADAM optimizer with exponential learning
rate decay (every 200 epochs) is used. The model is trained for 10000 epochs. To ensure that all loss
terms are of similar magnitude, λrec = 5.0, λz = 0.05 are used. Elemental mass constraint weights
(λel−j) for the three constituent elements carbon (C), hydrogen (H), and oxygen (O) are chosen
as λel−H = λel−C = λel−O = 0.5. These values were determined based on a hyperparameter
sweep and yielded the lowest validation loss. The training framework was implemented in Julia
programming language and the model was trained using 2 AMD EPYC 7713 64-core processors for
a walltime of 96 hours.

4 Results
In this section, results from the trained Phy-ChemNODE framework are presented. To determine the
optimal weighting of terms in the loss function and the latent space dimensionality, hyperparameter
studies were carried out. Figure 2a compares the validation set loss terms (post training) corresponding
to different λz values for λrec = 5, λel−j = 0.5 and fixed size of the latent space (dim(z) = 4), and
Figure 2b shows a similar comparison for varying size of the latent space (dim(z)) with λrec = 5,
λz = 0.05, and λel−j = 0.5.

To compare the effect of adding elemental loss constraints to the training objective, Figure 2c
compares the evolution of data loss (during training) between the cases trained with (λele−j = 0.5)
and without elemental mass constraints (λele−j = 0) on the validation set, and shows that the
inclusion of constraints enable more efficient model training. The trained framework is then used
to predict the temporal evolution of thermochemical scalars, as shown in Figure 3 for temperature
(T ) and species mass fractions (CH4, CO, CO2, OH, and O2) for an initial condition (corresponding
to T0 = 1600K) in the training set (ϕ = 1.0) and test set (ϕ = 1.1), with the ground truth depicted
in solid lines and the predicted Phy-ChemNODE solutions (from a posteriori autoregressive runs)
shown in markers. Excellent agreement can be observed between the two. Figure 4 shows the
temporal evolution of a few intermediate species for another set of initial conditions in the training
set (T0 = 1650K, ϕ = 1.0) the test set (T0 = 1700K, ϕ = 1.05), demonstrating high accuracy. As
further quantification of the accuracy of Phy-ChemNODE framework, Figure 5 shows the test set
MAEs for some of the thermochemical scalars, scaled by their corresponding data ranges. Based on
inference on an Intel i7-1165G7 workstation with 16 cores, Phy-ChemNODE yields speedups of 6x
and 860x over the full chemical mechanism in terms of overall simulation walltime, when deployed
with implicit (BDF) and explicit (RK45) solvers, respectively. Lastly, Figure 6 shows the temporal
evolution of C, H, and O mass fractions for certain initial conditions from the training and test sets.
Evidently, the model trained with elemental mass conservation constraints in the loss function obeys
mass conservation better than the case without constraints during deployment.

Conclusion and Next Steps
The NODE approach of learning stiff chemical kinetics is enhanced by coupling with an autoencoder
to perform dimensionality reduction and incorporating elemental (atom) mass constraints in the
loss function (Phy-ChemNODE). In future work, the training framework will be scaled to handle
wider range of thermodynamic conditions (needed for practical deployment in combustion CFD
simulations) and uncertainty quantification will be incorporated.
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Figure 3: Temporal evolution of temperature (T ) and mass fractions of CH4, CO, CO2, OH, and
O2 corresponding to initial conditions in a) training set (Ti = 1600K, ϕ = 1.0) and b) test set
(Ti = 1600K, ϕ = 1.1). The mass fractions of CH4, CO2 and OH are scaled by 4, and that of CO
by 3 for ease of plotting. Solid lines denote ground truth and markers denote Phy-ChemNODE
predictions.

(a) (b)

Figure 4: Temporal evolution of intermediate species (CH3, CH2O and C2H4) corresponding to
initial conditions in a) training set (Ti = 1650K, ϕ = 1.0) and b) test set (Ti = 1700K, ϕ = 1.05).
Solid lines denote ground truth and markers denote Phy-ChemNODE predictions.

Figure 5: Scaled test set MAEs for temperature (T ) and a few species mass fractions.

(a) (b) (c)

Figure 6: Temporal evolution of mass fractions of: a) C, b) H, and c) O elements corresponding to
initial conditions in the training (T0 = 1600K, ϕ = 1.0) and test (T0 = 1600K, ϕ = 1.1) sets.
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