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Abstract

Analog and radio-frequency circuit design requires extensive exploration of both
circuit topology and parameters to meet specific design criteria. This design process
is highly specialized and time-intensive, particularly as the number of circuit param-
eters increases and the circuit becomes more complex. Prior research has explored
the potential of machine learning to enhance circuit design procedures; however,
primarily focused on simple circuits. To date, a generic and diverse dataset with
robust metrics on advanced mm-wave circuits does not exist. To bridge this gap,
we present AICircuit, a comprehensive multi-level dataset and benchmark for
developing and evaluating ML algorithms in analog and radio-frequency circuit
design. AICircuit comprises seven commonly used advanced analog circuits and
two complex wireless transceiver systems composed of multiple circuit blocks, en-
compassing a wide array of design scenarios encountered in real-world applications.
We extensively evaluate various ML algorithms on the dataset, revealing the poten-
tial of ML algorithms in learning the mapping from the design specifications to the
desired circuit parameters. The data and codebase are available in the following
link: https://github.com/AvestimehrResearchGroup/AICircuit.

1 Introduction

By reaching the limits of Moore’s Law [21] in early 2020, the exponential scaling of transistors, the
core elements in circuit design, has become increasingly difficult, thereby slowing down the pace of
advancements in semiconductor technologies. Unlike digital circuits, where scaling can often lead to
straightforward performance improvements, analog and radio-frequency circuits should be custom-
designed for emerging applications, e.g., mm-wave cellular communications, radar systems, and
antenna systems, making their design both time-consuming and resource-intensive [17, 4, 9, 16, 1].

Conventional analog circuit design typically requires considerable effort and human involvement
when searching the design space, including circuit topology and each circuit’s parameters. Given
a set of design specifications (e.g., power consumption, bandwidth, etc.), designers usually need
first to decide the circuit topology and then conduct circuit sizing (i.e., parameter sweeping on each
individual component), as shown in Figure 1. Among all the phases within the design of analog
circuits, the complete schematic-level design is the most time-consuming part which may take up to a
few weeks or months.

A few prior works investigate machine learning algorithms to automate analog circuit design
[22, 11, 5, 15, 25, 6, 7]. In general, these methods train an ML model to learn the mapping between
design specifications and actual circuit parameters. Despite progress in the prior works, current
methods mainly show a proof of concept on simple circuits and systems such as two-stage voltage
amplifiers. It still remains unclear how to scale current NN-based solutions on real-world analog
systems with different components. In particular, a real-world system usually consists of different
circuit blocks that perform different functions, such as a transmitter with an oscillator followed by a
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Figure 1: Conventional procedure of analog circuit design, which involves tremendous efforts to sweep in the
parameter space to find the optimal design given design specifications.

power amplifier. Such systems introduce more complex mapping from inputs to outputs and exhibit
high non-linearity. Furthermore, a high-quality dataset that includes various complex circuits is
indispensable as a pivotal element in the ML-assisted circuit design.

In this work, we first introduce AICircuit, a multi-level circuit dataset and benchmark for training ML
algorithms to assist various types of analog circuit design. In particular, the dataset consists of seven
pivotal analog and radio-frequency circuits, i.e., common-source voltage amplifier (CSVA), cascode
voltage amplifier (CVA), two-stage voltage amplifier (TSVA), low-noise amplifier (LNA), mixer,
voltage-controlled oscillator (VCO), and power amplifier (PA). In addition, the dataset also consists
of complex systems with multiple cascaded circuit components, which has not been investigated in
prior works. AICircuit is a comprehensive collection of circuit parameters and simulated performance
metrics from an accurate commercial simulator (Cadence Virtuoso). In addition to the dataset, we
also conduct comprehensive evaluations on the benchmark dataset using various models ranging from
conventional machine learning algorithms, such as random forest, to modern neural networks.

2 Problem Statement

In this work, we investigate the capabilities of machine learning algorithms in automating analog
and radio-frequency circuit design. In particular, we evaluate machine learning algorithms on
homogeneous and heterogeneous circuits. We define homogeneous circuits that compromise multiple
circuits with identical functions. For instance, a two-stage voltage amplifier can be seen as a
homogeneous circuit with two cascaded single-stage voltage amplifiers (Fig 10). On the other hand,
we define heterogeneous circuits that compromise multiple circuit blocks with different functions,
such as a transmitter with a voltage-controlled oscillator and a power amplifier (Fig 7a).

Machine Learning-Assisted Design. ML-assisted design usually adopts a reversed design flow
compared to conventional circuit design. In particular, ML-assisted design takes a performance metric
vector, y, as inputs and uses a machine learning model M to predict a set of circuit parameters x as

x = M(y), (1)

The performance vector, y, may contain DC power consumption, bandwidth, voltage gain, etc, which
varies with circuit types. On the other hand, the circuit parameter vector, x, describes the quantitative
values of every component within the circuit, including resistances, capacitances, transistor widths,
etc. Compared to conventional circuit design, ML-assisted methods directly learn the mapping from
design specifications to circuit parameters, eliminating the need for parameter sweeping on x to find
the solutions that meet the design specification in y. Therefore, the whole design process can be
significantly simplified.

As a key contribution in this work, we investigate the performance of different models on diverse
circuits, ranging from a basic common-source amplifier to complex systems such as a transmitter
with multiple heterogeneous circuit blocks.

3 Dataset

AICircuit consists of seven homogeneous and two heterogeneous circuits. For all circuits, we adopt
the procedure as in Figure 2 to generate data. For a circuit, we first design a schematic using Cadence
tools [14]. We defer details of circuit schematics in Appendix A. We then identify all key circuit
parameters in the schematic that can affect the circuit performance. For each parameter, we set a
value range, [beg, end], and sweep the value with a small step size. For each parameter set, we run a
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Cadence simulator to obtain the simulation results and calculate performance metrics. Each parameter
set and the corresponding performance will be saved as one row in the dataset. After sweeping all
parameters, we obtain a dataset with all possible design points. At last, we split the dataset into train
and test sets for ML model training and testing.

Create circuit schematics
- CSVA, TSVA, CVA
- LNA, PA
- VCO, Mixer

- Transmitter, Receiver

Select parameters
- transistor width

- capacitance, · · ·

sw
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Figure 2: Procedure for creating datasets for commonly used analog circuits, including homogeneous
and heterogeneous circuits.

3.1 Datasets for Homogeneous Circuit Blocks

We collect seven commonly used analog and radio-frequency circuits. Schematics of these circuits
are provided in Appendix A. For each circuit, we select several circuit parameters that can greatly
affect the design performance, as listed in Table 2. Based on the complexity of each circuit, a different
number of parameters are considered in the simulation. The channel length of each transistor is fixed
at 45 nm to simplify the design space and mitigate short-channel effects. These parameters are also
the targets that an ML algorithm needs to predict given design specifications.

3.2 Datasets for Complex Heterogeneous Systems

In addition to basic homogeneous circuits, the work further investigates complex real-world
millimeter-wave (mm-wave) circuit systems that contain multiple circuit blocks with different func-
tions, as illustrated in Figure 7 [8]. In particular, we investigate a transmitter and a receiver operating
at 28 GHz, which are commonly used in high-speed communication systems for sending and receiving
mm-wave signals [13]. Table 1 lists design parameters to be optimized and the performance metrics
to be examined. More details of these circuits are also provided in Appendix A.

Compared to basic homogeneous circuits, these heterogeneous circuits comprise a large parameter
space to be optimized. Moreover, these systems exhibit increased non-linearity and intricate trade-offs
between each block, leading to further challenges in learning the mapping from performance metrics
to design parameters.

4 Evaluations

With the dataset collected from diverse circuits and complex radio-frequency systems, in this section,
we train and evaluate multiple ML algorithms on the dataset and investigate their strengths and
weaknesses.

Models. We test five different models: multi-layer perceptrons (MLPs), Transformers, support vector
regressors (SVRs), random forest (RF), and K-nearest neighbors (KNNs). For all models, we feed
the model with performance metrics and let the model predict the design parameters.

The transformer model [23] with the implementation based on [3] consists of one embedding layer,
several encoder layers, and one fully connected layer for predicting a vector of circuit parameters.
The multi-layer perception (MLP) model consists of seven fully connected layers, each intermediate
layer having a rectified linear unit (ReLU) activation function. For support vector regressor (SVR),
considering that SVR is a single-output regressor, we create multiple SVRs to predict all the circuit
parameters. In particular, we fit one SVR per target parameter. To enhance non-linearity, we adopt
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the rbf kernel [24] for each SVR model. In addition, RF regressors [2] combine the predictions from
multiple decision trees and output the mean of their predictions to create a more accurate and stable
prediction while KNNs locate the design parameters with performance close to input metrics. Details
of each model are provided in Appendix B.

Metrics. In model training, we use ℓ1 loss as the objective function that measures the distance
between the predicted parameters and the desired parameters. In model evaluation, we further run a
Cadence simulator given the predicted parameters and obtain the performance, ŷ. We calculate the
relative error compared to the desired performance specified in the dataset, y. We report an individual
error on each metric as

ith metric : erri = ∥yi − ŷi∥/yi (2)

End-to-End Training and Evaluation. Our codebase provides an end-to-end model training
and evaluation pipeline, as shown in Figure 3. It enables a smooth interaction between the ML
workflow and the analog circuit workflow. During the training stage, we simply follow the standard
ML workflow to load data and train the model. During the evaluation phase, we first obtain the
predicted parameters via the ML workflow and then call the Cadence simulator to compute the actual
performance and the relative error compared to the desired value. Importantly, by including a Cadence
simulator in the evaluation pipeline, we can accurately obtain metrics with inherent randomness
based on advanced analyses, such as the noise figure in a low-noise amplifier and the phase noise in a
voltage-controlled oscillator, which were not seen in prior works. More details are provided in Table
2 and 1.

def Tra in ( model , t r a i n s e t ) :
f o r _ i n range ( maxI ter ) :

x , y = loadData ( t r a i n s e t )
xPred = model ( y )
loss = calcLoss ( x , xPred )
# update model
model . f i t ( x , y )

train

def Eval ( model , eva lset , s imu la to r ) :
f o r _ i n range ( maxI ter ) :

x , y = loadData ( eva lse t )
xPred = model ( y )
# c i r c u i t workf low
# s imu la to r : s imu la to r c lass w i th

a l l c i r c u i t i n f o rma t i on
yPred = s imu la to r . run ( xPred )
e r r o r = c a l c E r r o r ( y , yPred )

evaluation

c lass Simula tor ( ) :
. . .
. . .
def run ( s e l f , xPred ) :

a l te rCi rcParam ( xPred )
# c a l l Cadence s imu la to r
c a l l ( cadenceCommand)
yPred = parseResul ts ( )

simulation

Figure 3: An end-to-end model training and evaluation pipeline.

4.1 Homogeneous Circuit Blocks

We first evaluate ML algorithms on homogeneous circuits. In particular, we show the results of MLP,
Transformer, SVR, and RF on a two-stage voltage amplifier (TSVA) in the main paper (Figure 4)
and defer other results of other circuits in Appendix D. To better present the results, we plot the
distribution of relative errors (See Eq(2)) of all metrics.
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Figure 4: Two-Stage Voltage Amplifier
Summary. Across all circuits in this section, we observe that ML models perform well in learning
the relationship between circuit parameters and simple performance metrics such as the DC power
consumption. Importantly, the observation holds regardless of the complexity of the circuits. The
reason is that the simple performance metrics usually exhibit a linear relation with circuit parameters,
which makes it easy to predict. However, as the relationship becomes more non-linear, learning
the relationships tends to be more challenging, even for MLPs and Transformers. For instance,
voltage gain in a two-stage voltage amplifier, conversion gain in a mixer, phase noise in VCO, and
performance metrics in PA are highly non-linear in relation to the circuit parameters. As a result, these
circuits predicted by ML models do not result in performance very close to the desired specifications.
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4.2 Heterogeneous Radio-Frequency Systems

Moving from homogeneous circuits to heterogeneous ones, the number of performance metrics
and circuit parameters increases. Furthermore, as heterogeneous circuits comprise multiple circuits,
the relationship between circuit parameters and performance is further complicated. Therefore,
evaluations on heterogeneous circuits provide more insights into how ML algorithms learn to predict
complex circuits. More results are provided in Appendix D.

Transmitter. In a transmitter system comprising VCO and PA, we can observe in Figure 5 that
as the circuit becomes more complex, circuit parameters are harder to predict to meet the desired
specification. Models such as SVR and RF lack sufficient capacity to predict complex systems,
resulting in large errors. MLPs and transformers, on the other hand, predict circuits with much
smaller errors. However, they still struggle to give a design that meets certain complex specifications,
such as output power.
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Figure 5: Transmitter (VCO and PA) system-level metrics.

Receiver. We further evaluate ML models on a receiver system comprising an LNA, a mixer, and
a CVA. Compared to the transmitter system, circuits in the receiver are less complex. Therefore,
models such as MLPs and transformers can predict circuits with smaller errors compared to the
desired specifications (Figure 6). Besides, since the training dataset of the receiver includes more
circuit parameters than the transmitter, the trained models exhibit better generalization performance
with more training data points.
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Figure 6: Receiver (LNA, Mixer, and CVA)

Summary. Throughout the evaluations of a transmitter and a receiver system, we can observe how
the performance of ML algorithms is affected by the complexity of circuits. From a receiver to a
transmitter, the relationship between circuit parameters and the performance becomes more non-linear.
As a result, it is more challenging to predict a circuit that meets design specifications.

5 Conclusion

In this work, we propose a multi-level benchmark dataset for analog and radio-frequency circuit
design. The proposed dataset, AICircuit, covers homogeneous and heterogeneous circuits. Homo-
geneous circuits comprise one or multiple circuits with identical functions, while heterogeneous
circuits comprise circuits with different functions. We evaluate various machine learning algorithms
on the benchmark datasets, including multi-layer perceptrons (MLPs), transformers, and support
vector regression (SVRs). The evaluations provide a comprehensive overview of the strengths and
weaknesses of each method. In a word, MLPs and Transformers usually give better designs compared
to other methods, especially for complex circuits. We also reveal that for complex circuits, further
optimization of model design and training are still needed to improve the design.
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A Circuits

Homogeneous Circuits. Among the homogeneous circuits, the analog voltage amplifiers, including
the common-source voltage amplifier (CSVA), cascode voltage amplifier (CVA), and two-stage
voltage amplifier (TSVA), are essential for voltage amplification, a critical function in most analog
circuits and feedback systems [20]. CSVA is a versatile and widely used component in analog and
radio-frequency circuit design. It receives input at the gate terminal and generates amplified output at
the drain terminal (See Figure 8). By combining the common-source (CS) and common-gate (CG)
stages, CVA can provide enhanced gain and improved bandwidth over CSVA, which is suitable for
high-frequency applications (Figure 9). TSVA further improves the output swings in the cascode
configuration and obtains high gains (Figure 10).

In addition to voltage amplifiers, the dataset also covers other types of circuits in radio-frequency
applications, including the low-noise amplifier (LNA), mixer, voltage-controlled oscillator (VCO),
and power amplifier (PA). In particular, the cascode LNA in a radio-frequency receiver front-end
provides substantial power gain while maintaining low noise across a wide bandwidth range (Figure
11). An active mixer is used for frequency modulation with conversion gain in radio-frequency
transmitters and receivers. VCO generates a periodic signal with frequency tuned across a wide
range controlled by a voltage signal. Owing to the low phase noise and power consumption, the
cross-coupled VCO has become a prevalent configuration to provide sustainable oscillation (Figure
13). The two-stage differential PA, the most power-intensive building block in the radio-frequency
transmitter, plays a crucial role in delivering significant power to the transmitting antenna without
compromising efficiency (Figure 14).

Heterogeneous Circuits. For a transmitter, we combine the voltage-controlled oscillator (VCO) and
power amplifier (PA) as a typical signal generator – amplifier system (Figure 7a) [19]. The system
first generates a periodic signal via a VCO with tunable frequency and then amplifies the signal by
the PA with substantial power gain. For a receiver, we establish a classical frequency conversion
chain by integrating the low-noise amplifier (LNA) with a mixer and cascode voltage amplifier (CVA)
(Figure 7b) [12]. With a signal received from an antenna, an LNA is first applied to amplify the weak
input signal without introducing undesired noise. Then, a mixer is involved in converting the signal
from radio frequency to intermediate frequency (IF) [18]. The output IF signal is then amplified by a
CVA that serves as an IF amplifier for further processing. There are two additional blocks, buffer and
low-pass filter, shown in the transmitter and receiver. As their topology and parameters are usually
fixed, we do not optimize them in the pipeline.

Voltage-Controlled
Oscillator

Buffer

28 GHz Signal Generator - Amplifier

Power Amplifier

RF Signal

(a) Transmitter system

RF Signal

Low-Noise
Amplifier

Mixer

28 GHz Frequency Conversion Chain

LO
(27.9 GHz)

Low-Pass
Filter

Cascode
Amplifier

IF Signal

(b) Receiver system

Figure 7: 28 GHz wireless transceiver circuits. (a) Transmitter architecture involving VCO and PA.
Buffer used here to sustain system stability; (b) Receiver architecture comprising LNA, Mixer, and
CVA. Low-Pass Filter deployed here to filter out the undesired high frequency components.

Schematics and Design Trade-offs. In this section, we provide details on the examined homogeneous
and heterogeneous circuits in Section 3 and 4. As mentioned in the body of the paper, time-consuming
parametric sweeps are necessary for designing analog and radio frequency circuits. Often, a small
subset of design parameters can satisfy the thresholds for design metrics. From a circuit design
perspective, the limited number of parameter combinations that satisfy the metrics happens due to:
1) the complexity of transistor models and the sensitivity of their operation to surrounding circuit
elements, circuit configuration, bias conditions, size of the transistor, etc. 2) inherent trade-offs
among various design metrics in each circuit. In what follows, for each circuit, in addition to the
schematics and set of design parameters and metrics, multiple important design trade-offs are listed
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within colored boxes adjacent to the schematics. The same color is reserved for a trade-off if it is
present in more than one circuit.
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Figure 8: Common-Source Voltage Amplifier.
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Figure 9: Cascode Voltage Amplifier.
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Figure 10: Two-Stage Voltage Amplifier.
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Figure 11: Low-Noise Amplifier.
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Figure 13: Voltage-Controlled Oscillator.
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Figure 14: Power Amplifier.
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Figure 15: Heterogeneous system on the transmitter side.
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Figure 16: Heterogeneous system on the receiver side.
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Heterogeneous Circuits Individual Block Parameter Sweeping Range

Transmitter System
specs:
dc power | bandwidth | output power
| voltage swing

Voltage-Controlled Oscillator (VCO)
specs:
phase noise | tuning range

C 50:50:150 (fF)
L 60:60:180 (pH)
Rp 300:100:500 (Ω)

WN1 7.5:2.5:12.5 (µm)
WN2 187.5:12.5:212.5 (µm)
Wvar 70:10:90 (µm)

Power Amplifier (PA)
specs:
power gain | drain efficiency | PAE

Lip 175:175:350 (pH)
Lis 60:60:120 (pH)
Lop 360:353:713 (pH)
Los 45:45:90 (pH)

WN3 22:5:32 (µm)
WN4 16:5:26 (µm)

Receiver System
specs:
dc power | gain | noise figure

Low-Noise Amplifier (LNA)
specs:
power gain | S11 | noise figure

C1 130:50:180 (fF)
C2 170:50:220 (fF)
Ld 180:50:230 (pH)
Lg 850:100:950 (pH)
Ls 80:10:90 (pH)

WN1 20:3:26 (µm)
WN2 37.5:2.5:42.5 (µm)

Mixer
specs:
voltage swing | conversion gain

C3 1:0.1:1.1 (pF)
R1 400:100:500 (Ω)

WN3 14:2:18 (µm)
WN4 6:2:10 (µm)

Cascode Voltage Amplifier (CVA)
specs:
gain

R2 300:100:400 (Ω)
WN5 26:2:30 (µm)
WN6 14:2:18 (µm)

Table 1: Heterogeneous circuits and the chosen parameters for each block. The sweeping range of
selected design parameters is written in the form of [beg, increment, end]. Detailed circuit

topology is provided in Appendix A. Specs of each circuit are explained in Appendix C.
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Homogeneous Circuit Parameter Description Sweeping Range

Common-Source Voltage Amplifier (CSVA)
specs:
dc power | bandwidth | gain

VDD supply voltage 1.2:0.1:1.8 (V)
Vgate gate voltage 0.6:0.05:0.9 (V)
RD load resistor 0.5:0.1:3 (kΩ)
WN width of nmos 3:1:10 (µm)

Cascode Voltage Amplifier (CVA)
specs:
dc power | bandwidth | gain

RD load resistor 0.5:0.1:2 (kΩ)
WN1 width of nmos 6:1:17 (µm)
WN2 width of nmos 5:1:12 (µm)
WN3 width of nmos 4.5:0.5:9 (µm)

Two-Stage Voltage Amplifier (TSVA)
specs:
dc power | bandwidth | gain

C1 miller capacitor 150:50:250 (fF)
WP1 width of pmos 10:1:18 (µm)
WP2 width of pmos 7.5:5:22.5 (µm)
WN1 width of nmos 10:1:18 (µm)
WN2 width of nmos 7.5:5:22.5 (µm)
WN3 width of nmos 16:2:24 (µm)

Low-Noise Amplifier (LNA)
specs:
dc power | bandwidth | power gain
| S11 | noise figure

C1 output capacitor 300:100:600 (fF)
C2 input capacitor 200:100:500 (fF)
Ld drain inductor 3:1:5 (nH)
Lg gate inductor 8.4:1:11.4 (nH)
Ls source inductor 0.6:0.1:0.8 (nH)

WN1 width of nmos 25:1.25:30 (µm)
WN2 width of nmos 25:1.25:30 (µm)

Mixer
specs:
dc power | voltage swing
| conversion gain | noise figure

C coupling capacitor 0.5:0.1:1.5 (pF)
R load resistor 200:25:500 (Ω)

WN1 width of nmos 15:1:25 (µm)
WN2 width of nmos 5:1:15 (µm)

Voltage-Controlled Oscillator (VCO)
specs:
dc power | frequency | phase noise
| tuning range

C capacitor in resonant tank 100:25:200 (fF)
L inductor in resonant tank 2:1:6 (nH)
Rp parallel resistor 1:1:4 (kΩ)

WN1 width of nmos 24:8:56 (µm)
WN2 width of nmos 11:1:12 (µm)
WN3 width of nmos 96:32:160 (µm)
Wvar width of nmos capacitor 75:12.5:125 (µm)

Power Amplifier (PA)
specs:
dc power | S11 | S22 | power gain
| PAE | drain efficiency | Psat

Lip input primary inductor 175:175:525 (pH)
Lis input secondary inductor 40:40:120 (pH)
Lm inter-stage matching inductor 87.5:87.5:263 (pH)
Lop output primary inductor 238:238:714 (pH)
Los output secondary inductor 30:30:90 (pH)

WN1 width of nmos 16:3:28 (µm)
WN2 width of nmos 24:4:40 (µm)

Table 2: Homogeneous circuits and the chosen parameters for each circuit. The sweeping range of
selected design parameters is written in the form of [beg, increment, end]. Detailed circuit

topology is provided in Appendix A. Specifications of each circuit are explained in Appendix C.
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B Implementation Details

As the performance metrics and parameters targeted by the models have different ranges, we first
apply the preprocessing and normalize the data to [−1, 1]. For training data splitting, we randomly
sample 90 percent of the data points as the training dataset, and 10 percent as the test dataset. We
train the neural networks (transformer and MLP) for 100 epochs using the Adam optimizer [10] with
a learning rate of 0.001. Each training is conducted several times to ensure that our methods are
robust to random seeds.

Model Parameter Description Value

Transformer

dim_model first fully connected layer dim 200
num_heads heads in the multi-head attention models 2
dim_hidden load resistor 200
dropout_p the dropout probability 0.1

num_encoder_layers number of layers in transformer encoder 6
activation activation function of transformer encoder relu

Multi Layer Perception (MLP) num_layers number of fully connected layers 7
dim_layers dimension of layers [200, 300, 500, 500, 300, 200]

Support Vector Regressor (SVR) kernel kernel type of the algorithm rbf
multi_target_regression_type type of combining multiple SVRs MultiOutputRegression

K Nearest Neighbors Regressor (KNN) n_neighbors number of neighbors 5
weights weight function used in prediction uniform

Random Forest Regressor (RF) n_estimators number of trees in the forest 100
criterion function to measure the quality of a split squared_error (l2 Loss)

Table 3: Models and the chosen parameters for each model.

Circuit CSVA CVA TSVA LNA Mixer VCO PA Transmitter Receiver

Dataset Size 7.8k 15.1k 19.3k 32k 17.1k 13.5k 5.6k 95.3k 155.4k

Table 4: Number of data points for each circuit.
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C Specifications of Each Circuit

In this section, we review the definitions of various performance metrics that are simulated for the
homogeneous and heterogeneous circuits in this work.
Voltage gain of an amplifier, denoted commonly as Av, is the ratio of the output amplified voltage
Vout to the input voltage Vin in an amplifier circuit.

Av =
Vout

Vin
(3)

Bandwidth is the range of frequencies over which an amplifier can operate effectively, defined by
the difference between the upper and lower cutoff frequencies.

BW = fhigh − flow (4)

For amplifiers with low-pass profile, the bandwidth is defined as the frequency at which the dB
amount of voltage gain drops from the low-frequency gain by 3 dB.
The total power that the circuit draws from the power supply is known as power consumption, and it
is calculated as the product of supply voltage and supply current.

P = Vsupply × Isupply (5)

Conversion gain is the measure of the signal amplification in a mixer, expressed in decibels,
comparing the output signal to the input signal.

CG = 20 log

(
Vout

Vin

)
dB (6)

Noise figure is the ratio of the input signal-to-noise ratio to the output signal-to-noise ratio, expressed
in decibels, indicating the noise performance of a low-noise amplifier, mixer, or receiver chain.

NF = 10 log

(
SNRin

SNRout

)
dB (7)

Intermediate frequency (IF) voltage swing refers to the peak-to-peak voltage of the mixer’s interme-
diate frequency signal.

The oscillation frequency is the frequency at which the oscillator produces its periodic signal, which
is normally controlled by the circuit’s inductance and capacitance in an LC-based oscillator.

fosc =
1

2π
√
LC

(8)

The power that the oscillator provides to a given load is known as output power, and it is computed
by dividing the root-mean-square (RMS) output voltage squared by the load resistance.

Pout =
V 2

out,RMS

Rload
(9)

Phase noise is a measure of the oscillator’s frequency stability, representing the noise power in a
1 Hz bandwidth at a specific offset frequency from the carrier, relative to the carrier power, where
Sϕ(f) is the phase noise power spectral density.

L(f) = 10 log

(
Sϕ(f)

2Pcarrier

)
dBc/Hz (10)

The oscillator’s tuning range is the range of frequencies that it can be adjusted over, measured from
maximum to minimum.

TR = fmax − fmin (11)

S11 represents the ratio of the reflected voltage wave to the incident voltage wave at the power
amplifier’s input, which shows how much of the input signal is reflected.

S11 =
Vreflected,1

Vincident,1
(12)
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S22 represents the ratio of the reflected voltage wave to the incident voltage wave at the power
amplifier’s output, which shows how much of the output signal is reflected.

S22 =
Vreflected,2

Vincident,2
(13)

Large signal gain is the ratio of the output power to the input power of the amplifier under large
signal conditions.

GLS = 20 log

(
Pout

Pin

)
dB (14)

Power added efficiency is the amplifier’s efficiency in converting DC power into radio frequency
output power while taking input power into account.

PAE =
Pout − Pin

PDC
× 100% (15)

Drain efficiency is defined as the ratio of radio frequency output power to total DC power consumed
by the amplifier.

DE =
Pout

PDC
× 100% (16)

Saturated power or Psat denotes the highest possible output power level that a power amplifier can
produce upon reaching saturation. Up until this point, increasing the input power further does not
significantly increase the output power.

Psat(dBm) = 10 log10

(
Psat(mW)

1mW

)
(17)

Power gain is a measure of how much a circuit increases the power of a signal from its input to its
output.

GP =
Pout

Pin
(18)

Voltage-controlled oscillator’s (VCO) output power is the amount of electrical power delivered at
its output terminal. The output power Pout is proportional to the square of the RMS voltage Vrms and
the load resistance Rload.

Pout =
1

2
· V 2

rms ·Rload (19)

Transmitter output power is the amount of electrical power delivered by the transmitter to the
antenna for transmission as electromagnetic waves.

Pout = Pin ·Gt (20)

where, Pout is the transmitter output power. Pin is the input power to the transmitter, and Gt is the
gain of the transmitter.
Transducer Gain ( Gt ) of Low Noise Amplifier (LNA) refers to the ratio of the output signal power
to the available input signal power which includes the matching effect as well.

GT =
Pout

Pin
(21)
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D Results on More Circuits

Results on Mixer.
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Figure 17: Mixer

Results on Voltage-Controlled Oscillator (VCO).
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Figure 18: Voltage-Controlled Oscillator

Results on Power Amplifier (PA).
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Figure 19: Power Amplifier

Results on Common-Source Voltage Amplifier (CSVA).
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Figure 20: Common-Source Voltage Amplifier
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Results on Cascode Voltage Amplifier (CVA).
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Figure 21: Cascode Voltage Amplifier

Results on Low-Noise Amplifier (LNA).
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Figure 22: Low-Noise Amplifier

Results on Transmitter.

For the metrics of individual components, circuits predicted by MLPs and transformers still result in
smaller errors compared to SVRs and RF. One interesting observation is that, as more performance
metrics are involved in learning a heterogeneous circuit, the trained models can generate circuits with
small errors on individual metrics (e.g., the tuning range of VCO compared to Fig 18).
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Figure 23: Transmitter (VCO and PA) metrics for individual components.

Results on KNN.
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Figure 24: KNN performance on homogeneous circuits.
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