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Abstract

Normalizing flows are a powerful technique for inferring probability distributions
from finite samples, a highly relevant task across the physical sciences. Using
two toy examples from astrophysics, we investigate the interplay between two
different sources of uncertainty in normalizing flow analyses: varying the draws
from the training distribution (data variance) versus varying the network initial-
ization (initialization variance). We find that for sufficiently large training sets,
initialization variance dominates for “simple” distributions while data variance
dominates for more “complex” distributions, as measured by the Kullback-Leibler
divergence. This suggests that normalizing flows trained on real-world datasets
may (fortunately) be robust against initialization choices.

1 Introduction

Normalizing flows (1) (NFs) are flexible and invertible neural networks capable of density estimation,
namely modeling complex and high-dimensional probability distributions from unlabeled training
data comprising a finite sample from the target distribution. A particularly important distribution in
astrophysics and astronomy is the classical 6-dimensional phase space distribution f(r,v) of stars
in galaxies1, from which many galactic properties can be inferred, such as the distribution of dark
matter. Classical density estimation techniques for f(r,v) suffer from the curse of dimensionality,
but the somewhat surprising generalization abilities of NFs (perhaps coming from implicit or explicit
regularization (2)) have been shown to be a promising tool on simulated data (3; 4; 5; 6; 7). Recently,
Ref. (8) applied this technique to a subset of data from the Gaia survey (9; 10) consisting of 5.8×106

1r,v refer to three-dimensional spatial coordinates and three-dimensional velocities respectively.
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stars within 4 kpc of the Sun2 for which full 6-dimensional phase space measurements are available,
and inferred a local dark matter density of 0.47± 0.05 GeV/cm3.

In the physical sciences, quantifying errors on measurements is paramount. The quoted error bars
in Ref. (8) include numerous sources of uncertainty, including measurement uncertainty, statistical
uncertainty from the finite training data, and fit uncertainty. The latter was measured empirically by
training an ensemble of networks with different initializations on the same training data (which we
refer to as initialization variance), with the result that the spread of the ensemble of trained distribution
functions was negligible compared to the statistical uncertainty from training the same initialized
network on different draws from a simulated data distribution (which we dub data variance). Given
the flexibility and power of these NF networks in modeling physical datasets, understanding the
relative size of the errors associated with initialization and data variance is critical. Underestimating
the effects of the former can result in an underestimate in the final error associated with the physical
inference. On the other hand, if initialization variance can be confidently estimated to be negligible
for a sufficiently large training set, the results of the analysis can be considered more robust to the
many arbitrary hyperparameter choices inherent in neural network analyses.

In this work, inspired by the results of Ref. (8), we begin an exploratory investigation into how
the relative size of initialization and data variance depend on the target distribution and the size of
the training set. To this end, we compute the variance of the validation error for two benchmark
astrophysical datasets (a spherically symmetric Plummer sphere potential and an axisymmetric
Miyamoto-Nagai disk potential), varying over the training dataset size. We also perturb these
benchmark datasets by adding in a fraction of the total mass as an idealized stellar stream and varying
the stream fraction, as a toy model for deviations from a “simple” base distribution. We find the
somewhat surprising result that for the unperturbed base distributions, initialization variance seems to
be comparable to or greater than data variance for any sufficiently large training set. As the stream
fraction is increased in both cases, we observe a crossover where data variance begins to dominate
for large training sets. We conjecture that the crossover may happen at a particular value of the
Kullback-Leibler (KL) divergence of the perturbed distribution relative to the base distributions, a
measure of data complexity. Our preliminary conclusion is that, fortunately, real-world datasets such
as Gaia which are sufficiently complex may be generically robust against initialization variance.
Throughout this paper, we work in units where the Newtonian gravitational constant G = 1.

2 Datasets and Methods

We use two benchmark datasets to quantify the initialization and data variances of our NFs, both of
which are often used to model astrophysical data and have known phase space densities which can be
carefully perturbed and studied. The first is a Plummer sphere potential (12), which has been used to
model globular clusters (13), and a Miyamoto-Nagai (MN) disk potential (14), which has been used
to model the disk potential of the Milky Way (14; 15). The Plummer sphere potential (ΦPlummer)
and density profile (ρPlummer), from which we sample to train our NFs, are as follows:

ΦPlummer(r) = −(r2 + a2)−1/2; ρPlummer(r) =
3

4π
(r2 + a2)−5/2, (1)

where r is the radial distance from the center. The Plummer sphere is spherically symmetric and is
characterised by a flat inner density profile (i.e. ρ ∼ r0) at distances r ≪ a and a slope of −5 at
large radial distances, r ≫ a. When sampling particle positions using ρPlummer, we set the scale
radius a = 1 for simplicity. To sample the velocity phase space, we use the following phase space
distribution f(r,v):

f(r,v) ∝

{
[−E(r,v)]

7/2
, E(r,v) < 0

0, E(r,v) ≥ 0
where E(r,v) =

1

2
v2 +Φ(r). (2)

We normalize the total mass of the sphere so each sampled particle has an individual mass of 1/n
where n is the total number of particles. The gravitational potential of the MN disk is axisymmetric
and given by

ΦMN(R, z) = −(R2 + (
√
z2 + b2 + a)2)−1/2, (3)

21 pc ≈ 3.3 light-years. Our Sun is located ≈ 8 kpc from the galactic center (11).
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where R is the radial distance in the disk plane, z is the vertical distance, b characterises the disk
height and a is the scale radius in the disk plane. We set a = 1 and b = 0.1 so the disk is thin. To
sample the particle positions and velocities, we use the same method as Ref. (4), drawing the initial
particle positions from the following double exponential density profile:

ρinitial,MN ∝ exp

(
−−R

a
− |z|

b

)
. (4)

The initial particle velocities are sampled from the distributions

vR = 0.05 vc(R, z) δ1, vT = vc(R, z)(1− 0.1|δ2|), vz = 0.05 vc(R, z) δ3, (5)

where vR, vT , vz are the radial disk plane velocities, the tangential disk plane velocities and vertical
velocities respectively, δi ∼ N (0, 1), and vc(R, z) is the circular velocity at a given (R, z) position

calculated as
√
r ∂ΦMN(R,z)

∂r . Since this initial distribution is not in equilibrium, we also evolve the
system of particles along orbits governed by the MN potential with the parameters a = 1, b = 0.1,
using galpy (16). We integrate the particle orbits over a time period of approximately 100 orbital
times assuming an orbital time period 2πa/vc(R = a, z = 0). The final distribution of positions and
velocities forms our training and validation datasets. Plots of samples from our distribution functions
and more details on the orbit integration are given in App. A.1.

While these distributions are standard in astrophysical settings, real data distributions are often more
complex and include non-equilibrium, dynamical structures like satellite galaxies and stellar streams.
In order to perturb the two base distributions in a controlled manner, we also add a toy model of
a stellar stream to the z = 0 plane. The number of particles in each distribution is quantified by
fstream = Mstream/(Mbase + Mstream) where Mstream represents the total mass of all particles
in the stream. We ensure that the total mass is normalized as Mstream + Mbase = 1 and that all
particles have the same mass. The positions and velocities of the stream particles are chosen from the
following distributions:

ϕstream ∼ Uniform(0, π/4), θstream ∼ N (0, σθ = 0.01), (6)
rstream ∼ N (r = 10, σR = 0.01), vstream ∼ N (vc(r = 10) , σv = 0.01), (7)

where ϕ, θ and r represent the azimuthal angle, zenith angle and radial distance respectively. We
ensure the direction of the stream velocity vstream is a circular orbit on the plane connecting the
particle position to the origin. This choice of parameters ensures that the stream particles are
reasonably separated spatially from the base distributions and are also aligned fairly closely with
a perfect circular orbit in the z = 0 plane. We show visually the effect of perturbing the base
distributions in App. A.1.

Our general training procedure is as follows. We implement a Masked Autoregressive Flow (MAF)
using the nflows package (17) to model the different distributions, with six MAF blocks arranged
in sequence. Each MAF block applies a Masked Affine Autoregressive Transformation to the 6-
dimensional input. The transformation uses hidden layers with 32 features and 2 blocks per layer,
utilizing a GELU activation function. To increase the expressiveness of the model, a permutation is
applied between each MAF block. The base distribution of the flow is a standard normal distribution
over 6 dimensions. Before training, each dataset is preprocessed by subtracting the mean and scaling
by the standard deviation. The training is performed with the Adam optimizer (18) using a learning
rate of 0.001, optimizing the negative log likelihood of the flow model. We implement early stopping
with a patience of 50 epochs based on validation loss to prevent overfitting. The training data is split
into batches of 1,024 particles, and the model is trained over a maximum of 1000 epochs, saving the
model state when an improvement in validation loss is observed. In practice, we find our patience
criterion is satisfied before reaching the maximum number of epochs.

In order to characterise the data variance σdata, we randomly generate an initial sampling of Ntrain

particles from the chosen phase space distribution, and initialize and train a single MAF, recording
the minimum validation loss. We then repeat this process 50 times, keeping the initial weights of
the MAF fixed but varying the random particle sampling for all runs. For each training set size
Ntrain, we compute the standard deviation of these negative log likelihood losses, σdata, from the
sample variance of the ensemble. We repeat this process for different training set sizes. In all the
calculations of validation loss and σdata, we ensure that the same validation dataset containing
106 sample particles is used, regardless of Ntrain, to capture the performance of the MAF on a
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Figure 1: Left panel: Ratio of initialization variance to data variance for different training set sizes
and different stream fractions (fstream) using the Plummer sphere as a base distribution. Each data
point is the result of comparing 50 trained normalizing flows with varied initialization but fixed
training dataset to 50 other trained normalizing flows with fixed initialization but varied datasets.
Right panel: Same as left panel but using the MN disk potential as the base distribution. For both
base distributions, increasing fstream lowers the relative magnitude of σinit compared to σdata. We
plot the mean losses and their variances in App. A.2.

consistent dataset. We use a very similar method to calculate the initialization variance, σinit, with
the only difference being that we fix the particle sampling for each Ntrain but vary the MAF weight
initialization using the Kaiming uniform initialization (19). Thus, for each Ntrain, we train our MAF
50 times with different random initializations, recording the minimum log likelihood loss. We then
compute the standard deviation of these losses, σinit, from the sample variance of the ensemble. The
separate mean and variances of the loss values for each normalizing flow ensemble are plotted and
discussed in App. A.2.

To train all normalizing flows, we use a single A100 GPU. The total training time for 50 flows and
Ntrain = 200, 000 is ∼ 10 hours wall time. All computations were performed using the Princeton
Research Computing resources at Princeton University which is a consortium of groups led by
the Princeton Institute for Computational Science and Engineering (PICSciE) and the Office of
Information Technology’s Research Computing. A link to our code base is given in Appendix A.4.

3 Results and Discussion

In Fig. 1, we plot σinit/σdata, the ratio of initialization to data variance, for the Plummer sphere and
MN disk base distributions. For the Plummer sphere (left panel), we find the initialization variance
dominates over data variance for low fstream values with ratios σinit/σdata ≳ 2 even at large training
set sizes of 105 and greater, where for fstream = 10−3 there are on average 100 stream particles in the
training data. However, for greater stream fractions (fstream ≳ 10−2), we see data variance becoming
comparable to (and eventually dominant over) initialization variance. This is perhaps surprising
because stream particles are now better sampled in the training data, which might be expected to
reduce data variance. In the right panel of Fig. 1, we show the results of the introducing an idealised
stream perturbation to the MN disk. The results qualitatively resemble those of the Plummer sphere:
increasing the stream fraction reduces the relative magnitude of initialization variance against data
variance. Specifically, for training sizes ≥ 105 and for fstream ≳ 0.1, the ratio σinit/σdata < 1.

These results may indicate that for simple NF architectures like MAFs, initialization variance may
dominate when the dataset is “smooth" and without significant substructure. For more complex
datasets with variegated features, as is common in astrophysical settings, data variance may be more
important in assessing the final errors associated with using NFs; viewed another way, the complexity
of the distribution may render the NF fit more robust against model hyperparameters. One measure
of the complexity of our perturbed datasets compared to their simpler, base distributions is the KL
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Base Distribution fstream DKL

Plummer 10−1 2.54

Plummer 10−2 0.35

Plummer 10−3 0.16

Plummer 10−4 0.15

MN Disk 2× 10−1 5.88

MN Disk 10−1 2.83

MN Disk 10−2 0.24

Table 1: KL divergence for different base distributions and stream fractions.

divergence.3 The KL divergence between the perturbed distribution p and the base distribution q takes
a particularly simple form if p is a mixture of q and a small (normalized) perturbation distribution
α with weight ϵ, namely p = (1− ϵ)q + ϵα with ϵ ≪ 1. In that case, we have to leading order in ϵ
(denoting the integration measure d3r d3v on phase space as dµ for brevity)

DKL(p||q) =
∫

dµ ((1− ϵ)q + ϵα) ln

(
(1− ϵ)q + ϵα

q

)
= ϵ2

∫
dµ

(α− q)2

2q
+O

(
ϵ3
)
, (8)

where the linear term ϵ(α− q) integrates to zero. We compute the KL divergence between the base
and perturbed distributions numerically and list the values in Tab. 1 (calculation details are outlined
in App. A.3). In Fig. 1, the approximate cross-over fstream value for which the ratio σinit/σdata

becomes approximately unity occurs at fstream = 0.01 (black dots), for both the Plummer sphere
and the MN disk. That corresponds to KL divergence values of 0.35 and 0.24, respectively. Thus, the
cross-over point occurs at very similar KL divergence values, despite the base distributions being
qualitatively different. The KL divergence between the base Plummer sphere and the MN disk, using
the Plummer sphere as the reference distribution, is 8.16, an order of magnitude greater than the KL
values where the cross-over occurs.

While this work has considered simple cases for the architecture and the astrophysical distributions
used alongside a basic method to determine the relative importance of initialization error and data
error, there are several avenues to extend this work. It would be interesting to see if our qualitative
results hold with different functional forms of the perturbation distribution, including adding multiple
streams, diffuse substructure meant to represent dwarf galaxies or the Gaia Sausage-Enceladus (20),
as well as masks representing observer bias or artifacts from telescope slewing. These alterations
would allow us to test our qualitative hypotheses on more realistic astrophysical datasets. Another
important caveat is that we do not characterize the correlation between data variance and initialization
variance in this work, although it is not hard to imagine that both quantities are correlated (21). With
more compute, we also hope to test our conclusions to greater Ntrain to see if with high enough
training set size, the ratios of initialization and data variances reach an asymptote or follow a different
power law.
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Figure 2: Columns: The Face-On or Side-On views of the Plummer sphere distribution but with
different stream fractions (fstream ∈ {0, 0.001, 0.1}). Rows: The visualisations of a Plummer sphere
with an idealised stream perturbation of fraction fstream, as described in Sec. 2. We include the scale
bar for a distance of five scale radii (i.e. 5a) although we set a = 1 for simplicity. The base Plummer
sphere distribution is perfectly spherically symmetric but the stream perturbation is not.

A Appendix

A.1 Base and Perturbed Distributions

In order to visualise the base and the perturbed distributions, we display the base Plummer sphere
distribution and the base Miyamoto-Nagai (MN) disk distributions with different perturbed stream
fractions in Figs. 2 and 3 respectively. The main differences between both distributions is that the
Plummer distribution is spherically symmetric while the MN disk distribution obeys cylindrical
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Figure 3: Columns: The Face-On or Side-On views of the Miyamoto-Nagai disk distribution but
with different stream fractions (fstream ∈ {0, 0.01, 0.1}), similar to the format of Fig. 2. Rows: The
visualisations of a Miyamoto-Nagai disk with an idealised stream perturbation of fraction fstream.
As in Fig. 2, we include the scale bar for a distance of five scale radii (i.e. 5a) although we set a = 1
for simplicity. Unlike the Plummer sphere, the Miyamoto-Nagai disk is cylindrically symmetric but
not spherically symmetric.

symmetry. The Plummer sphere is also more extended than the MN disk. Note that to equilibrate the
MN disk, we chose a reference orbital timescale of 2πa/vc(R = a, z = 0) over which to integrate
the initial particle positions and velocities because most particles are contained within the scale radius
and thus have shorter orbital times. The chosen timescale ensures that most of the particles in the
system are being evolved over 100 orbital periods.
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Figure 4: Top row: The mean (µdata) and standard deviation (σdata) of the validation loss for
normalizing flows of fixed initial weights but varied training data samplings of the Plummer sphere
distribution, varied over training set size and stream fraction. Bottom row: The mean (µinit) and
standard deviation (σinit) of the validation loss for normalizing flows with varied initial weights but
fixed training data samplings of the Plummer sphere, varied over training set size and stream fraction.

A.2 Model Losses and Variances

In this subsection, we present the absolute loss values of the models as well as the initialization and
data variances in order to show the convergence of the models. Fig. 4 displays the mean losses µ and
the standard deviation of the losses σ for the ensembles of normalizing flows trained on the Plummer
sphere while Fig. 5 shows the same metrics for the MN disk. For each data distribution individually,
all models achieve comparable losses to the base distributions even when additional substructure
is added in the form of idealized stellar streams. The overall mean loss values broadly agree (i.e.
µdata ≈ µinit) for fixed training size, so the relation between σinit/σdata appears to be robust. The
main differences between both distributions are that the mean loss values (µinit and µdata) for the MN
disk are lower than those of the Plummer sphere. This is likely because the MN disk’s phase-space
density is centrally concentrated, allowing the normalizing flow to map this compact distribution
into the central, high-probability regions of the latent Gaussian space. Despite this difference, the
normalizing flow ensembles trained on both distributions exhibit the same trend in σinit/σdata.

A.3 KL Divergence Between Base and Perturbed Distributions

In order to quantify the differences between the base distributions and the perturbed distributions in
Tab. 1, we compute the KL divergence with the base distribution as the reference. Mathematically,
this amounts to the assigning the base distribution as q and the perturbed distribution as p in the KL
divergence expression DKL(p||q) =

∫
dr3 dv3 p ln (p/q) where we integrate over six-dimensional

phase space (three spatial coordinates and three velocity coordinates). In practice, doing such a
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Figure 5: Top row: The mean (µdata) and standard deviation (σdata) of the validation loss for
normalizing flows of fixed initial weights but varied training data samplings of the Miyamoto-Nagai
(MN) disk distribution, varied over training set size and stream fraction. Bottom row: The mean
(µinit) and standard deviation (σinit) of the validation loss for normalizing flows with varied initial
weights but fixed training data samplings of the MN disk, varied over training set size and stream
fraction.

calculation is numerically challenging so we use the k-nearest neighbors method to approximate
the distributions p and q based on sampled particle coordinates and positions, using the following
formula (23; 24):

DKL(p ∥ q) ≈ d

Np

Np∑
i=1

(
log

sk(xi)

rk(xi)

)
+ log

Nq

Np − 1
(9)

where d = 6 (the data dimensionality), Np is the number of datapoints sampled in the perturbed
distribution p, Nq is the number of datapoints sampled in the base distribution q, sk(x) is the k-th
nearest neighbor distance for the base distribution q and rk(x) is the k-th nearest neighbor distance
for the perturbed distribution p. For our calculations, we use k = 8, Np = Nq = 106 and the
numerical computation of sk, rk is done with the publicly-available sklearn package (25).

A.4 Link to code package

All the code we use to generate the datasets, initialize and train the MAFs, and to visualise and
calculate KL divergence values can be found at the following github repository: https://github.
com/roy-physics/normalising_flow_uncertainties.git.
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