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Abstract

Scientific machine learning (ML) is becoming increasingly useful in learning
closure models for multi-scale physics problems; however, many ML approaches
require a vast array of training data and can struggle with generalization and
interpretability. Here, rather than learning an entire closure operator, we adopt
an existing reduced-dimension model of the microphysics and learn an optimal
re-parameterization of the solver. We demonstrate two approaches for the training
the reduced dimension closure model 1) an a priori method that optimizes the
closure parameterization and the neural network parameters separately and 2) an
a posteriori method that simultaneously optimizes both. We find that while each
method is capable of achieving a target loss, the a posteriori method is capable of
achieving the target loss with a smaller network, and smaller training data sizes.

1 Introduction

Many physics problems occur over a vast range of length scales, time scales, and/or dominant physical
processes, from climate science to materials physics. Simulating these complex phenomena in detail
across all scales simultaneously is typically computationally intractable; however, the interaction
across scales drives the physics at the heart of many science and engineering problems. This difficulty
has led to the development of many multi-scale numerical methods for representing and interrogating
systems across the scale hierarchy. One common approach is to construct constitutive relationships
representing the effect of microscale processes at macroscale levels. Scientific ML has become an
increasingly important tool in the development of such closure models [e.g. Pathak et al., 2022, E
et al., 2023, Stachenfeld et al., 2022]; however, many black-box ML methods require large amounts
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of expensive simulations to acquire training data, struggle to generalize, and lack interpretability
[Brunton et al., 2020, Mishin, 2021].

Rather than learning the full time derivative operator in a conservation law based differential equation
system, in this paper we use a simple reduced-dimension (0D) model as the closure to calculate the
time derivative and instead learn a reparameterization that improves the predictive capability of the
reduced dimension model. Using the simulation of biofuel pyrolysis as a motivating example, in
this paper we demonstrate the implementation of both an a priori (I) and an a posteriori (II) learning
scheme where a neural network (NN) is optimized to predict parameters supplied to a reduced
dimension differentiable ODE solver. This parameterization can then be directly implemented in the
macroscale model without needing to modify the large scale solver.

2 Methods

2.1 Particle Scale Models

The high fidelity microscale model is a finite element method (FEM) based model of time-dependent
biomass pyrolysis of a single particle using COMSOL Multiphysics 5.6. We use a 2D axisymmetric
model with anisotropic heat and mass transport, simultaneous multi-species chemical reactions. The
reaction scheme, heat capacities, molecular weights, and baseline Arrhenius rate constants from the
Miller-Bellan scheme [Xiong et al., 2013]; we list the relevant reaction equations and baseline rate
constants in Appendix Tables 2 and 3 respectively. The full model is described in Pecha et al. [2021].

To create the training and test datasets we use Latin Hypercube sampling to select 250 data trajectories
across oven temperature, particle Feret Length (FL), and particle aspect ratio; 20% (50) of the
trajectories were reserved as test data leaving 200 as the full training set. We also linearly sampled an
additional set of trajectories to form a validation set where we could verify trends in error with input
parameter.

2.2 Reactor Scale Models

The macroscale model used in this work is an Euler-Euler multiphase fluid model, from within
open-source computational fluid dynamics library, OpenFOAM; the multifluid approach is routinely
used for large scale gas-solid multiphase systems Xiong et al. [2013] such as in a biomass pyrolysis
reactor. The governing conservation partial differential equations for mass, momentum and energy
for each phase are solved along with drag, heat transfer, and chemical production interaction terms
between phases, similar to our earlier models on bioreactors Sitaraman et al. [2023].

2.3 Optimization of Closure Parameterization

Let the full high-fidelity partial differential equation (PDE) be denoted
F (u;λ) = 0 (1)

where F represents the PDE operator, u(x, t) is the solution, and λ represents physical parameters of
the system or boundary conditions. Then, let A be some reduction operator such that

A(F (v̄;λ)) = F̄ (v̄;λ) = 0 (2)
where the desired solution ū = A(u) is not necessarily equivalent to v̄ (and in most cases is not)
as the model reduction operator A and PDE operator F do not commute. Furthermore, let µ be
explicitly defined as a set of empirical parameters that arise from applying the reduction operator (e.g.
a spatially averaged heat transfer coefficient), such that F̄ (v̄;λ, µ) = 0.

Following the formalism of Sanderse et al. [2024], the goal of closure modeling is to find Gθ with
parameters θ such that Gθ(v̄

′;λ) = 0 with v̄′ ≈ ū. One natural choice for the form of Gθ is
Gθ = F̄ + C; this then defines a commutator error C(u, ū, µ) ≈ mθ(ū, µ). On the other hand, if
the exact form of F is not known and one only specifies that the reduced model should be of the
evolution form, then the entire solution Gθ(v̄, µ) =

∂v̄
∂t +mθ(v̄, µ) can be learned without specifying

that mθ must take the form of the commutator. Here we define

Gθ := F̄ (v̄′;λ, µθ) (3)
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Figure 1: Workflow showing training process for a priori and a posteriori models as related to the
micro and macro scale models.

where µθ := fθ(λ) which we will approximate by a neural network NNθ(λ). This approximation is
inherently limiting in multiple ways: 1) defining Gθ as a reparameterization of F̄ and 2) allowing µθ

to only depend on λ, not u; however, this trade-off allows us to minimize the volume of high-fidelity
microscale simulations needed to train a reliable functions, requires no modification of the macroscale
solver to implement, and does not introduce any operator dependent stability concerns.

A guiding intuition in our approach is that learning an effective closure is very similar to learning an
effective surrogate model, yet existing approximations (e.g. a 0D representation of a 3D process)
already embed much of the physics that is of interest. Therefore, in many engineering cases where the
ultimate goal is improved predictability of some Quantity of Interest (QoI) and macroscale models
already introduce a non-negligble error, learning adjustments to an existing approximation is faster
than learning the entire closure from scratch and still improves upon the state-of-the-art.

In this paper we contrast two approaches to learning µθ = fθ(λ): an a priori (I) and a posteriori
(II) method. In both methods ūi are sampled from the high-fidelity microscale model such that
F (ui;λi) = 0, while v̄i are calculated using an approximate solver F̄ such that F̄ (vi;λi, µi) = 0.
Parameters λi ∈ Λ and Λ is a predefined parameter region of interest. Both methods are illustrated
graphically in Figure 1.

1. A Priori: In the a priori method, for each λi a black box optimizer is used to minimize
||ūi−v̄i|| through varying µi where F̄ (v̄i;λi, µi) = 0. The parameters of the neural network
NNθ are then optimized on ||µi − µ′

i|| where µ′
i = NNθ(λi).

2. A Posteriori In the a posteriori method, a differentiable F̄ solver is used in the
neural network optimization. Thus, ||ūi − v̄i|| can be optimized for directly using
F̄ (v̄i;λi, NNθ(λi)) = 0.

While ensuring that F̄ is differentiable is a high barrier for many applications, the increasing popularity
of auto-differentiation has led to a robust industry of developing fast, fully differentiable solvers. In
particular, when considering multi-scale problems where continuum approximations average out
fine-scale variation and spatial gradients are smaller than time gradients for the property of interest,
a given grid cell the reduced PDE F̄ can be approximated by a non-spatially dependent ordinary
differential equation (ODE) F̄ ′ of which many fast differentiable options exist.

3 Results

Table 1 summarizes the architectures and corresponding losses for both schemes. We find that the
best a priori and a posteriori scheme achieve similar losses in the final solution, with the a posteriori
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model slightly outperforming the a priori model in the test dataset. We also note that there is a
non-negligible lower limit in model error due to the inherent approximation in constructing G′ as a
non-spatially varying approximator. By comparing multiple black box optimizers across the training
& test datasets we estimate that error to be roughly 1E-3; therefore, our best models are approaching
the lower loss limit.

Figure 2 shows several example roll-outs of the various models for our test dataset. In all cases
both the a priori and a posteriori models improve consistency with the full 3D model compared to a
baseline computed by running the same 0D model without modifying the chemistry scheme. Note
that in each rollout the particle parameters (listed in Appendix Table 4) are fed to the neural networks
a single time to compute the effective activation energies for a 0D model, rather than computing a
derivative at each time step. The effective activation energies are then fed as fixed parameters to the
same differentiable IVP solver used in training the a posteriori models to integrate the solution over
the time period of interest.

Model Hidden
Layers

Yield Solution
MSE Train

Yield Solution
MSE Test

EA

MSE Train
EA

MSE Test
Neural ODE (256,256) 1.11E-03 1.21E-03 - -
Offline A (256,256) 1.06E-03 2.19E-03 7.32E-02 1.44E+00

Table 1: Comparison of errors across model for the a priori and the a posteriori model. Note that as
the a posteriori model is not trained based on existing EA targets we do not report EA loss.
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Figure 2: Example rollouts for test data set points showing the desired quantity of interest (Tar Yield)
over time for the full 3D COMSOL model (black), the baseline approximator with no parameter
variation (grey), the a priori model (green), and the a posteriori model (blue).

A key concern for using machine learning methods to train surrogate models (or parameterizations
thereof) is the volume of training data required, particularly for relatively expensive high-fidelity
models. In Figure 3a we compare the efficacy of the trained models on number of training data points
using data randomly selected from the initial training data set to form the smaller train subsets. We
find that the a posteriori method requires far fewer data points to reach the target test accuracy than
the a priori method and thus generalizes far better for small dataset sizes.

From a domain science perspective, the goal of this study is to improve the predictive capability of the
reactor scale yields based on particle scale properties; therefore in Figure 3b and c we investigate the
dependence of yields on particle Feret length at both the micro and macro scale. As tar yield depends
strongly on temperature through Arrhenius reaction rates, neglecting the influence of temperature
gradients across the particle leads to a very minimal Feret length trend in the baseline model (larger
particle sizes will have correspondingly larger temperature gradients across the particle). Both
approaches to correcting the reduced dimension model do show a stronger trend in yield with Feret
length than the baseline; however, the a posteriori model generally shows a closer match to the full
3D results. Furthermore, the a posteriori model appears to be much smoother, an important factor for
incorporating the model into optimization schemes at the reactor scale.

We hypothesize that both the difference in surrogate smoothness and the dependence of model
accuracy on the training data size is due to the properties of the loss landscape in a priori black box
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optimization. The moderate degeneracy of the output space parameters combined with a relatively
flat loss landscape create a situation where training data points close in particle parameter space
may not have values close in effective activation energy space from the black box optimizer, while
co-optimizing incentivizes a smoother relationship. This interpretation is supported by Appendix
Figures 4; however, further study is necessary to fully support this conclusion.

As the a posteriori model has generally performed better in comparisons thus far, we exclusively
show the impact of implementing this surrogate parameterization at the macroscale. As expected,
the reactor model with surrogate parameterization shows a much stronger dependence on particle
Feret length than the baseline fixed parameter model. While the trend in decreasing yield with Feret
length are similar in the particle scale and reactor scale model, the full two-fluid reactor model also
includes impacts of particle residence time and spatial temperature dependence of the reactor and is
thus worthy of a separate comparison.
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Figure 3: Left: Mean test accuracy versus number of training data points for the a priori (green) and
a posteriori (blue) models. Shaded regions show 1 standard deviation. The dashed line shows the
error of the baseline model with no parameter variation while the dotted line shows an estimate of the
target data error (constrained by the capability of the non-spatially varying approximator). Center:
Final tar yield versus particle Feret Length (FL) at the particle scale for the full 3D COMSOL model
(black), the baseline approximator with no parameter variation (grey), the a priori model (green), and
the a posteriori model (blue). Right: Average tar yield versus particle Feret Length at the reactor
scale for the baseline OpenFOAM model (grey) and the OpenFOAM model with the a posteriori
model for activation energies (green). Error bars show standard deviation from time averaged fluxes
at the outlet after the reactor simulations reach steady state.

4 Conclusion

In this paper we have investigated two approaches for the training of a simple machine learning model
to predict the optimal parameterization of a reduced dimension model: 1) an a priori method where
we initially use a black box optimizer to find the optimal parameterization to match each training data
trajectory and then train a neural network on the input parameter/pre-optimized parameter pairs and
2) an a posteriori method where we incorporate a differentiable initial value problem solver directly
into the training loss of the neural network and optimize in a single stage. We find that while each
method is capable of achieving a target loss, the a posteriori method is capable of achieving the target
loss with a smaller network, smaller training data sizes, and produces a smoother output parameter
landscape, though further investigation is needed to assess to what degree these conclusions depend
on the loss landscape of the parameterization. Finally, we demonstrate the utility of this method for
improving the predictive capability of macroscale models for multi-scale problems, without requiring
any modification of existing solvers.
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A Supplementary Information

Component Reaction Y A [s−1] E [MJ·kmol−1]
Cellulose k1c – 2.80E+19 242.4

k2c – 3.28E+14 196.5
k3c Yc = 0.35 1.30E+10 150.5

Hemicellulose k1h – 2.10E+16 186.7
k2h – 8.75E+15 202.4
k3h Yh = 0.60 2.60E+11 145.7

Lignin k1l – 9.60E+08 107.6
k2l – 1.50E+09 143.8
k3l Yl = 0.75 7.70E+06 111.4

Tar k4 – 4.25E+06 108.0
Table 2: Kinetic parameters of CSW pyrolysis. Our optimization varies the activation energy vector
(last column).

Material No. Reaction rate equation

1 dm1

dt = −k1cm1

2 dm2

dt = −k1hm2

3 dm3

dt = −k1lm3

4 dm4

dt = k1cm1 − (k2c + k3c)m4

5 dm5

dt = k1hm2 − (k2h + k3h)m5

6 dm6

dt = k1lm3 − (k2l + k3l)m6

7 dm7

dt = k2cm4 + k2hm5 + k2lm6 − k4m10

8 dm8

dt = (1− Yc)k3cm4 + (1− Yh)k3hm5 + (1− Yl)k3lm6 + k4m10

9 dm9

dt = Yck3cm4 + Yhk3hm5 + Ylk3lm6

Table 3: Chemical reaction rate equations of all the components.

Sim Toven [K] FL [mm] Aspect
0 8.02E+02 8.08E+00 3.38E+00
1 7.79E+02 9.85E+00 3.80E+00
2 7.42E+02 1.06E+00 5.18E+00
3 7.99E+02 7.96E+00 6.50E+00
4 8.00E+02 1.26E+00 2.32E+00
5 8.10E+02 2.78E+00 6.47E+00
6 7.26E+02 4.06E-01 5.57E+00

Table 4: Simulation parameters for the test simulations shown in Figure 2
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Figure 4: Difference between the baseline activation energy value and the optimized/predicted values
for the black-box optimized values (top subfigure), the predictions from the a priori optimized NN
(middle subfigure), and the predictions from the a posteriori optimized NN (bottom subfigure). Each
column shows a different activation energy from the 10 chemical reaction pathways (see Table
2). Values are calculated using three separate 2 dimensional sweeps with fixed oven temperature
(top row), fixed aspect ratio (middle row), and fixed Feret Length (bottom row). Note the relative
discrepancy in smoothness of the black box optimization and a priori model (trained on similar black
box data) in comparison to the a posteriori model.
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