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Abstract

Quantifying the uncertainty from machine learning analyses is critical to their
use in the physical sciences. In this work we focus on uncertainty inherited from
the initialization distribution of neural networks. We compute the mean µL and
variance σ2

L of the test loss L for an ensemble of multi-layer perceptrons (MLPs)
with neural tangent kernel (NTK) initialization in the infinite-width limit, and com-
pare empirically to the results from finite-width networks for three example tasks:
MNIST classification, CIFAR classification and calorimeter energy regression. We
observe scaling laws as a function of training set size ND for both µL and σL,
but find that the coefficient of variation ϵL ≡ σL/µL becomes independent of
ND at both infinite and finite width for sufficiently large ND. This implies that
the coefficient of variation of a finite-width network may be approximated by its
infinite-width value, and may be calculable using finite-width perturbation theory.

1 Introduction

Deep learning techniques have improved performance beyond conventional methods in a wide variety
of tasks. However, for neural networks in particular, it is not straightforward to assign network-
induced uncertainty on their output as a function of network architecture, training algorithm, and
initialization (1). One approach to uncertainty quantification (UQ) is to treat any individual network
as a draw from an ensemble, and identify the systematic uncertainty with the variance in the neural
network outputs over the ensemble (2; 3). This variance can certainly be measured empirically
by training a large ensemble of networks, but it would be advantageous to be able to predict it
from first principles. This is possible in the infinite-width limit of multi-layer perceptron (MLP)
architectures, where the statistics of the network outputs after training are Gaussian with mean and
variance determined by the neural tangent kernel (NTK) (4; 5; 6). For realistic MLPs with large
but finite width n, one can compute corrections to this Gaussian distribution that are perturbative in
1/n (7). However, the finite-width computation depends on tensors of size N4

D, where ND is the
training set size, which rapidly becomes unwieldy as ND grows large (1; 2; 3).

To sidestep the difficulties of large ND, we propose to exploit scaling laws (8; 9; 10), an apparently
ubiquitous phenomenon in deep learning where test loss L follows a power law L ∝ N−αD

D with
some task-dependent scaling exponent αD. Such scaling laws have been observed for both finite-
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width and infinite-width networks, and have been argued to be relatively insensitive to the neural
network architecture for a given task, notably including whether or not a network is at finite width.
Without attempting to explain the origin of these scaling laws, we can nonetheless use their existence
and the simplicity of the infinite-width Gaussian statistics to attempt to extrapolate the expected mean
test loss µL and its variance σ2

L to large ND. The infinite-width prediction only depends on matrices
of size ND ×ND, making a comparison to experiments more feasible.

In this work, we compute µL and σ2
L for infinite-width MLPs for regression tasks on three example

datasets: the benchmark MNIST classification problem formulated as a regression to 1-hot labels,
the benchmark CIFAR classification problem also formulated as a regression to 1-hot labels, and
an example from high-energy physics (HEP), energy calibration in a calorimeter detector. For all
examples, we find nontrivial scaling laws for both µL and σ2

L, but with related scaling exponents
such that the coefficient of variation

ϵL ≡
σL

µL
(1)

asymptotes to a scaling exponent of αD ≈ 0 at sufficiently large ND. We give a plausibility argument
for this somewhat surprising “invariant” of infinite-width architectures, and we demonstrate with
numerical experiments that very similar scaling exponents persist at finite width.

There is a large body of work investigating scaling laws for wide networks and linear models,
including Refs. (11; 12; 13; 14; 9; 15; 16; 10; 17). To our knowledge, our work is the first to
demonstrate the scaling exponent αD ≈ 0 for the coefficient of variation statistic ϵL, in the NTK
parameterization where finite-width corrections may in principle be computed perturbatively. In
future work we intend to study how our results interplay with related work in mean-field or µ-
parametrization (14), as well as to what extent feature learning is important for the effects of finite
width on the coefficient of variation.

2 Problem setup

In order to maintain theoretical control and confine all stochasticity to the initialization distribution,
we work with MLPs in critically initialized NTK parametrization, trained with full-batch gradient
descent (GD). We have shown in A.3 that our results generalize to other optimizing schemes, such as
ADAM. The MLP forward pass is given by

z
(1)
i = b

(1)
i +

n0∑
j=1

W
(1)
ij xj , z

(ℓ+1)
i = b

(ℓ+1)
i +

nℓ∑
j=1

W
(ℓ+1)
ij σ

(
z
(ℓ)
j

)
, (2)

where xj are the components of an input vector x⃗ ∈ Rn0 , W (ℓ)
ij and b

(ℓ)
i are weights and biases at

layer ℓ, σ(z) is the activation function, all L−1 hidden layers have the same width n, and the network
output is a vector z⃗(L) ∈ RnL . To facilitate analytic computations of the NTK (see Sec. 3 below), we
choose σ(z) = erf(z). For this choice of activation, initializing biases to zero and drawing weights
in layer ℓ from zero-mean Gaussian distributions with variance 1/nℓ−1 enforces criticality, namely
that the typical magnitude of preactivations does not grow or shrink exponentially with depth (7).
Each network is then trained with full-batch gradient descent,

θµ ← θµ − η
∑
ν

λµν
dLA

dθν
, LA ≡

1

nLND

∑
α∈A

1

2
||z⃗(L)

α − y⃗α||2, (3)

where LA is the MSE loss on the training set A = {x⃗α, y⃗α}, θµ indexes the weights and biases, η is
the global learning rate, and (following (7)) the learning rate tensor λµν is

λ
b
(ℓ)
i1

b
(ℓ)
i2

= δi1i2λb/ℓ, λ
W

(ℓ)
i1j1

W
(ℓ)
i2j2

= δi1i2δj1j2λW /n. (4)

All of the above scalings permit a sensible infinite-width limit, n→∞. Our free hyperparameters at
infinite width are therefore η, L, and λb/λW . We specify particular choices for these hyperparameters
in Sec. 4, but have checked that our results do not appear to depend on these choices. We are interested
in µL ≡ E[LB] and σ2

L ≡ Var[LB ] as a function of ND, where B is the test set and the expectation
and variance are taken over the initialization distribution.
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3 Infinite-width predictions

The predictions and statistics of an infinite-width MLP of depth L are fully characterized by two
matrices: the kernel K(L)

αβ and the NTK Θ
(L)
αβ , where α and β are inputs from the training or test

sets. In the notation of Ref. (7), the components of these matrices can be defined through forward
recursions

K
(1)
αβ =

1

n0
x⃗α · x⃗β , K

(ℓ+1)
αβ = ⟨σ(uα)σ(uβ)⟩K(ℓ) ; (5)

Θ
(1)
αβ = λb +

λW

n0
x⃗α · x⃗β ; Θ

(ℓ+1)
αβ =

λb

ℓ
+ λW ⟨σ(uα)σ(uβ)⟩K(ℓ) + ⟨σ′(uα)σ

′(uβ)⟩K(ℓ) Θ
(ℓ)
αβ ,

(6)

where

⟨F (uα1
, uα2

)⟩K ≡
1√

det(2πK2)

∫
duα1

duα2
exp

(
−1

2
uTK2u

)
F (uα1

, uα2
) (7)

is a two-dimensional Gaussian expectation over u ≡ (uα1 , uα2) with covariance K2 ≡ Kα1α2 , the
2 × 2 submatrix of K. We choose σ(z) = erf(z) in this work in order to analytically evaluate all
Gaussian integrals in (5) and (6), as derived in Ref. (18; 19; 6), which minimizes numerical error.

For notational convenience, we now specialize to the case of one output neuron i.e. nL = 1, though
all of the steps below generalize to any nL. At initialization, the output distribution p(z(L)|A) is
Gaussian with mean zero and covariance K(L). Each subsequent GD step is a linear transformation,

z
(L)
δ ← z

(L)
δ − η

∑
α∈A

Θ
(L)
δα (z(L)

α − yα), (8)

which updates the mean and covariance of p(z(L)|A) but preserves the Gaussian nature of the
distribution. If the NTK submatrix evaluated on the training set, ΘA, is invertible, taking the limit of
an infinite number of GD steps leads to a convergent geometric series. In this case, the end-of-training
mean prediction m∞

β and variance (σ∞
β )2 for a single test point x⃗β is independent of η and is given

by (6; 7):
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β ≡ E[z(L)

β ] = ΘT
βΘ

−1
A yA, (σ
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β )2 ≡ Var[z
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T
βΘ

−1
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A KAΘ

−1
A Θβ ,

(9)
where yA is the vector of training set labels; KA is the kernel evaluated on the training set; and
Θβ and Kβ are columns of Θ(L)

αβ and K
(L)
αβ , respectively. If ΘA is ill-conditioned, we may still

compute the mean and variance of the prediction at each step of GD using Eq. (8), and implement
early stopping to determine m∞

β and σ∞
β . In either case, our desired quantities µL and σ2

L are

µL ≡
1

2|B|
∑
β∈B

E
[
(z

(L)
β − yβ)

2
]
, σ2

L ≡

 1

4|B|2
∑

β1,β2∈B

E
[
(z

(L)
β1
− yβ1)

2(z
(L)
β2
− yβ2)

2
]−µ2

L.

(10)
The Gaussian expectations are evaluated in Appendix A.1 and generalized for nL ̸= 1.

4 Finite-width Experiments

We compare the infinite-width predictions of Sec. 3 with experiments on finite-width networks. We use
three example datasets: the standard MNIST benchmark (20), the standard CIFAR benchmark (21),
and an example relevant for HEP, namely simulated calorimeter data generated for a prior study
of electron and photon classification and energy measurement using regression (22). A common
application of machine learning in HEP is to determine the energy of a high-energy particle based
on the pattern of energy deposits (“hits”) in a segmented calorimeter detector. Because the spatial
distribution of hits is important, an architecture encoding spatial correlations such as a convolutional
neural network (CNN) is likely preferable to an MLP, but a persistent issue is quantifying uncertainties
in the inferred energy from these analyses; currently, UQ is done by training large ensembles of
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Figure 1: Mean loss (left) and coefficient of variation (right) scaling laws on our three example
datasets. The fits show linear least-squares fits in log-log space along with 1σ errors on the power
law index. Infinite-width MNIST and CIFAR appear to show a broken power law for ϵL so we do not
provide a fit.

neural networks, which is resource-intensive (22). To apply our MLP setup to this problem, we flatten
the raw simulated calorimeter hits into a single vector (with the expectation of dramatic performance
reduction) and regress to the true energy of the particle initiating the event. Details of the data
generation procedure, as well as a link to our training set data, are given in Appendix A.2. In the
calorimeter example, µL ̸= 0 represents the magnitude of the bias away from the true energy of each
event. If ϵL ≪ 1, then µL should be assigned as the systematic uncertainty on the energy calibration.
However, if ϵL ≳ 1, the fluctuations of the predictions of the MLP ensemble are larger than the bias,
and the systematic uncertainty is instead dominated by σL.

4.1 Training and architecture details

In our experiments, we choose a random sample of size ND from each of our example datasets as
our training set, and train an ensemble 150 MLPs for each ND. Each MLP has L = 3 layers with
a width of n = 30 for each hidden layer. The networks are initialized and trained as described in
Sec. 2. Training is executed using TensorFlow (23), leveraging the NSF ACCESS program under an
Explore allocation of ∼4000 node-hours. We set λb/λW = 10 and use η = 10 for MNIST, η = 5
for CIFAR, and η = 10−2 for the calorimeter dataset. For the calorimeter data at infinite width, we
take η = 10−4. Early stopping with a validation set of 103 and patience of 104 epochs is used to
monitor for overfitting; each network trains in roughly 1 hour in ≈ 105 − 106 epochs. Finally, the
performance of each network is evaluated on a fixed test set of size 104, which is consistent across all
training set sizes. The resulting test loss of each network at each ND is saved to compute the sample
mean and variance offline.

4.2 Results

The results of our experiments are shown in Fig. 1. We see that the scaling of mean loss (left panel)
and ϵL (right panel) are quite similar between infinite and finite width. For our problems, µL does
not differ by much for the two architectures, and similarly, ϵL is on the same order of magnitude.
Further, αD ≈ 0 for ϵL for infinite width and finite width for both datasets (or asymptotes to zero
at large ND for infinite-width MNIST and CIFAR), highlighting ϵL as a potential MLP “invariant”
meriting future study. We see similar results for the Adam optimizer (24) (Appendix A.3).

One can make the following heuristic plausibility argument for the infinite-width scaling of ϵL.
Suppose the entries of the test-train NTK ΘB, kernel K, and inverse NTK Θ−1

A scale with ND as
ΘB ∼ (ND)

p, K ∼ (ND)
r, Θ−1

A ∼ (ND)
k. Empirically measuring each of these scaling laws

(Appendix A.4), we find that p, r ≈ 0, but k < 0; the the ND scaling of the inverse NTK elements
seems to be driving the µL scaling law. Using Eq. 9 and assuming the last term in (σ∞

β )2 dominates,
we find µL ∼ (ND)

2k+4 and σ2
L ∼ (ND)

4k+8, where the extra powers of ND come from the matrix
multiplications over the training set. Since σ2

L contains exactly twice as many powers of Θ−1
A and

sums over A as µL, the coefficient of variation scales as ϵL ∼
√

(N4k+8
D )

(ND)2k+4 ∼ (ND)
0. The broken

power law in ϵL for MNIST and CIFAR may result from the different scaling of other terms in the
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variance in Eq. (9) for small ND. To connect with existing UQ approaches in physics using Bayesian
networks (25; 26), we investigate a Bayesian interpretation of the infinite-width ϵL in Appendix A.5.

5 Conclusion

In this work we have shown empirically that the mean and variance of the MLP test loss on three
regression tasks exhibit scaling laws with training set size ND. The scaling exponents for the mean
loss µL resemble the corresponding scaling laws at infinite width, while the scaling exponent for the
coefficient of variation ϵL is approximately zero at finite width and asymptotes to zero at infinite
width for large ND. These results already indicate the importance of finite-width effects for UQ,
which can change the scaling laws for σL by order-1 factors. However, ϵL may be well-approximated
by the infinite-width value implying that systematic uncertainty is dominated by µL alone. In future
work it would be interesting to minimize ϵL as a function of λb/λW at infinite width and see if
this also minimizes ϵL at finite width; understand how this result relates to existing work using
µ-parametrization; and compute ϵL at finite width by generalizing the results of Sec. 3 using finite-
width perturbation theory. Indeed, the latter may be feasible even in light of the N4

D scaling of the
finite-width tensors because of the independence of ϵL from ND, as long as the scaling laws persist
to sufficiently small ND. Finally, it would be interesting to apply finite-width perturbation theory to
Bayesian neural networks (27) to see if the same scaling laws appear.
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A Appendix

A.1 Derivation of mean loss and loss variance at infinite width

Here we evaluate the Gaussian expectations to compute the mean test loss and its variance for
infinite-width neural networks, given their mean predictions m∞

β and the covariance matrix Σβ1β2 .

We start with the case where nL = 1. The diagonal entries Σββ ≡ (σ∞
β )2 were given in Eq. (9); the

full covariance matrix entries are (6)

Σβ1β2
= K

(L)
β1β2
−ΘT

β1
Θ−1

A Kβ2
−ΘT

β2
Θ−1

A Kβ1
+ΘT

β1
Θ−1

A KAΘ
−1
A Θβ2

. (11)

It will be convenient to shift the output z(L)
β by the mean, so that z̃(L)

β ≡ z
(L)
β −m∞

β are zero-mean
Gaussian variables with the same covariance Σβ1β2

as the unshifted outputs. Defining ∆β ≡ y∞β −mβ

as the mean prediction error for each test point x⃗β , we have (7)

µL ≡ E[LB(T )] = E

 1

2|B|
∑
β∈B

(z
(L)
β − yβ)

2


=

1

2|B|
∑
β∈B

E
[
(z̃

(L)
β −∆β)

2
]

=
1

2|B|
∑
β∈B

(
∆2

β +Σββ

)
, (12)

where in the last line we have used E
[
z̃
(L)
β

]
= 0 and E

[
(z̃

(L)
β )2

]
= Σββ .
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For the variance, we additionally need to compute

E[L2
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4|B|2
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(13)

where in the second line we have used the fact that odd moments of z̃(L)
β vanish, and in the third line

we have used Wick’s theorem for the quartic expectation. The loss variance is then given by

σ2
L = E[L2

B]− µ2
L, (14)

where the first term is given in Eq. (13) and the second term is given in Eq. (12).

For nL ̸= 1, we index the output neurons with Latin letters i, j: z̃(L)
β,i ≡ z

(L)
β,i −m∞

β,i and ∆β,i ≡
y∞β,i −mβ,i. At infinite width, output neurons are perfectly uncorrelated so the covariance matrix is
diagonal in neural indices,

E
[
z̃
(L)
β1,i

z̃
(L)
β1,j

]
= δijΣβ1β2

. (15)

The mean loss is

µL = E

 1

2|B|nL

∑
β∈B

nL∑
i=1

(z
(L)
β,i − yβ,i)

2


=

1

2|B|nL

∑
β∈B

nL∑
i=1

E
[
(z̃

(L)
βi
−∆β,i)

2
]

=
1

2|B|nL

∑
β∈B

(
nLΣββ +

nL∑
i=1

∆2
β,i

)

=
1

2|B|nL

∑
β∈B

(
nLΣββ + ||∆⃗β ||2

)
, (16)

where the factor of nL comes from summing over nL identical copies of the covariance E
[
(z̃

(L)
β,i )

2
]
,

and in the last line we have changed to vector notation,
∑nL

i=1 ∆
2
β,i ≡ ||∆⃗β ||2 = ∆⃗β · ∆⃗β .
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Similarly, for the variance we need

E[L2
B] =

1

(2|B|nL)2

∑
β1,β2∈B

nL∑
i,j=1

E
[
(z

(L)
β1,i
− yβ1,i)

2(z
(L)
β2,j
− yβ2,j)

2
]

=
1

(2|B|nL)2

∑
β1,β2∈B

nL∑
i,j=1

{
E
[
(z̃

(L)
β1,i

)2(z̃
(L)
β2,j

)2
]
+∆2

β1,i
E
[
(z̃

(L)
β2,j

)2
]
+∆2

β2,j
E
[
(z̃

(L)
β1,i

)2
]

+4∆β1,i∆β2,jE
[
z̃
(L)
β1,i

z̃
(L)
β2,j

]
+∆2

β1,i
∆2

β2,j

}
=

1

(2|B|nL)2

∑
β1,β2∈B

[
n2
LΣβ1β1

Σβ2β2
+ 2nLΣ

2
β1β2

+ nL

nL∑
i=1

{
∆2

β1,i
Σβ2β2

+∆2
β2,i

Σβ1β1

}

+ 4Σβ1β2

nL∑
i=1

{∆β1,i
∆β2,i

}+
nL∑

i,j=1

∆2
β1,i

∆2
β2,j

]

=
1

(2|B|nL)2

∑
β1,β2∈B

[
n2
LΣβ1β1

Σβ2β2
+ nL

(
2Σ2

β1β2
+ ||∆⃗β1

||2 Σβ2β2
+ ||∆⃗β2

||2 Σβ1β1

)

+ 4Σβ1β2
∆⃗β1
· ∆⃗β2

+ ||∆⃗β1
||2 ||∆⃗β2

||2
]
. (17)

As before, the variance σ2
L is computed by subtracting Eq. (16) from Eq. (17).

A.2 Calorimeter Data Details

Particle colliders and their detectors are the prototypical tools in HEP. These detectors include
calorimeters, which measure particles’ energies and are composed of an array of detecting elements,
or “cells,” where particles deposit energy. This results in a spatial distribution of energy deposition
that is used to both identify entering particles and quantify their energies. Thus, machine learning can
be used for both (particle) classification and (energy) regression; in this work we focus on the latter.

Following Ref. (22), we generate our dataset using GEANT4 (30), simulating the proposed Linear
Collider Detector (LCD) at the CLIC accelerator. In the LCD, we simulate an electromagnetic
calorimeter (ECAL) and a hadronic calorimeter (HCAL). The ECAL is structured with 25 silicon
sensor planes interspersed with tungsten absorber layers and arranged in a cylindrical geometry with
square cells measuring 5.1 mm on each side. The HCAL, positioned behind the ECAL, comprises 60
layers of polystyrene scintillators with steel absorbers, segmented into larger 3× 3 cm2 square cells.
The dataset is formed by outputting 3D arrays of energy deposits in each of the ECAL and HCAL
cells, which due to their geometry gives us, for each event, an 11× 11× 60 array for HCAL and a
25× 25× 25 array for ECAL. These arrays are then flattened into a large 22885-dimensional vector.

While many particles can in principle be simulated, we specialize to a sample of 105 electrons entering
the HCAL and ECAL (where one electron entering corresponds to an event and thus a datapoint)
with a range of incident angles close to the beam direction and a range of 10− 100 GeV of incoming
energy. This incoming energy is set as the label corresponding to our 22885-dimensional input
vector. We take into account the effects of solenoidal magnetic field and other materials preceding
the calorimeters.

Our dataset of 105 electron events can be found here: https://zenodo.org/records/13715377.

A.3 Variation of training algorithm

While our infinite-width results apply, strictly speaking, only for full-batch gradient descent, we can
investigate how robust the ND independence of ϵL is when we vary the training algorithm. In Figs. 2
and 3 we show the mean test loss and coefficient of variation as in Fig. 1, but using networks trained
with the Adam optimizer with η = 10−3 for MNIST and η = 10−6 for calorimter data. For both
datasets, we use β1 = .9, β2 = .999 and with a minibatch size of 1000. The results are somewhat
noisier, but the overall trend is for a roughly flat scaling law for ϵL (right panels). However, while the
µL scaling laws for MNIST agree almost perfectly between the two optimizers, the µL scaling laws
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for the calorimeters are markedly different, and the values for ϵL differ by more than a factor of 2. It
would be interesting to investigate in future work to what extent the different behavior of MNIST and
the calorimeter data is a consequence of finite-width feature learning.

Figure 2: Mean loss and coefficient of variation scaling laws using the Adam optimizer in MNIST.
For this example, Adam and full-batch GD show very similar scaling laws for both µL and ϵL.

Figure 3: Mean loss and coefficient of variation scaling laws using the Adam optimizer in calorimeter
data. For this example, the ϵL scaling appears to be flat for Adam as it was for full-batch GD, but the
µL scaling law is markedly different.

A.4 Measurements of kernel and NTK element scalings with dataset size

For the case where the NTK is invertible, we can attempt to gain some intuition for the ND indepen-
dence of the coefficient of variation statistic ϵL by ignoring the matrix structure of the infinite-width
predictions (9) and simply studying the scaling behavior of the kernel and NTK elements. For the
MNIST dataset where the NTK is invertible, in Fig. 4 we show the mean matrix elements for the
test-train NTK ΘB, the training set kernel KA, and the inverse of the training NTK, Θ−1

A . Only the
latter scales nontrivially with ND (left panel). In the right panel, we show the scalings of the mean
diagonal and off-diagonal elements, Θ−1

αα and Θ−1
αβ , respectively, of the inverse NTK. The scalings

are different, with the diagonal elements growing with ND while the off-diagonal elements decrease.
It would be interesting to investigate further how these scaling laws relate to generalization behavior
in the infinite-width limit.

A.5 Bayesian interpretation of infinite-width ensemble

In physics, model uncertainty is typically expressed as the width of a Bayesian posterior, which
quantifies the degree of confidence in the prediction given the training data. While neural networks
trained under gradient descent do not perform exact Bayesian model fitting at finite width (7), infinite-
width MLPs can perform Bayesian inference with a modified gradient descent algorithm where only
the last layer parameters are updated (18; 31; 32; 33; 34; 6). The Bayesian posterior is still Gaussian,
with mean and covariance given by Eq. (9) with all instances of Θ replaced by the kernel K. It
is therefore interesting to investigate whether the infinite-width NTK scaling laws resemble those
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Figure 4: Scaling of mean matrix elements with training set size ND. Left: The only matrix
contributing to the mean and variance of the infinite-width prediction that appears to scale nontrivially
with ND is the training NTK inverse Θ−1

A . Right: the diagonal and off-diagonal elements of the NTK
scale differently.

Figure 5: Comparison of Bayesian inference and gradient descent in infinite-width networks trained
on MNIST. Left: scaling of mean loss µL. Right: scaling of coefficient of variation ϵL.

for Bayesian inference, which would imply that the infinite-width variance σL (and possibly the
finite-width variance as well) can be interpreted as a true Bayesian credible interval (35). In Fig. 5, we
show the results of this comparison for the MNIST data. In order to obtain the Bayesian prediction,
the kernel has to be (numerically) invertible, which in our examples is only true for MNIST. We
see that the Bayesian and NTK results for the mean agree extremely well. Furthermore, while the
coefficient of variation differs somewhat between the two training algorithms at small ND, both
Bayesian inference and GD training asymptote to the same value of ϵL at large ND, with variations
only at the percent level. The similarity of infinite-width Baysesian inference (also called neural
network Gaussian processes) to infinite-width GD (or NTK Gaussian processes) was noted in the first
papers to study the infinite-width NTK dynamics for deep networks (6; 35), but to our knowledge the
agreement for ϵL at large ND is a new result. In future work it would be interesting to investigate how
robust this result is to both the depth of the network L and the choice of learning rate hyperparameter
λb/λW .
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