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Abstract

Designing free-form photonic devices is a challenging topic due to the high degree
of structural freedom. Here, we present AdjointDiffusion, a new algorithm that op-
timizes photonic structures using adjoint sensitivity analysis and diffusion models.
We demonstrate that integrating adjoint gradient values into the denoising process
enables the generation of high-performance device structures. Our method can
optimize structures with a small number of simulations by incorporating a diffusion
model trained on synthetic images that follow fabrication constraints. Compared to
conventional algorithms, our approach eliminates the need for intricate binarization
and conic filters, overcomes the issue of local optima, and provides a variety of
design options. Despite the inherent stochasticity, our algorithm robustly designs
high-performance devices and outperforms state-of-the-art nonlinear algorithms.

1 Introduction

Photonics focuses on the manipulation of light waves; designing the appropriate structure of photonic
devices plays a key role in achieving effective modulation of light. Inverse design [Molesky et al.,
2018] has emerged as a crucial domain within the structural optimization of photonic devices. The
field focuses on generating optimal structure that maximizes performance, quantified as a Figure of
Merit (FoM). Instead of manually designing geometry based on intuition or trial and error, inverse
design algorithms employ optimization techniques to iteratively adjust structural parameters, such as
the permittivity (ε) of each structural coordinate.

Adjoint sensitivity analysis [Miller, 2012, Cao et al., 2002] is a kind of inverse design tool that
uses two simulations (direct and adjoint) to calculate the FoM gradient with respect to structural
parameters. This gradient is referred to as the adjoint gradient. The strength of adjoint sensitivity
analysis lies in its simulation efficiency, as it determines the adjoint gradient of every coordinate
using only two simulations. Adjoint optimization [Allaire, 2015] refers to a family of gradient-ascent
algorithms that utilize the adjoint gradient value. The value is added to the structure coordinate-
wise. However, since this method updates each coordinate individually, the generated structure
might have numerous coordinates with different values from their neighbors. Such irregularities are
undesirable for fabrication, as the presence of numerous small structural components complicates the
process and increases the likelihood of fabrication errors. To mitigate this issue, a conic filter, which
smooths the structure, is used to ensure a more uniform and manufacturable outcome. In addition,
adjoint optimization necessitates binarization since the algorithm generates grayscale structures. This
binarization process can unpredictably degrade the FoM. Therefore, meticulous parameter setup
is necessary to ensure the final design closely approximates the optimal grayscale solution while

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.



Figure 1: Illustration of the process of integrating adjoint optimization with diffusion models for
generating structures. (a) The forward and reverse diffusion process. The forward process (red
arrows) starts from binary images (ε̂0) and adds Gaussian noise until the images are completely noisy.
The reverse process (blue arrows) denoises the noisy images step-by-step, using a learned model θ to
reconstruct the binary images. (b) Schematics of adjoint sensitivity analysis in our algorithm. The
adjoint gradient gt is calculated for the denoised prediction ε̂0(εt)by the component-wise product
of direct and adjoint fields. (c) The calculated gradient from (b) is added component-wise to the
generated structures in the reverse process, where conditional parameters σ and t are applied.

meeting binary constraints. Moreover, gradient-based optimization is inherently prone to local optima
issues. Although nonlinear algorithms can address this issue, they might not be suitable for more
complex setups.

2 Method

2.1 Problem setup

We set our target problem as a bending waveguide shown in Figure 2. Bending waveguides are
electromagnetic waveguides—structures that confine and direct wave propagation— specifically
designed to guide waves along a curved or bent path. We utilize Si (εr = 11.6) and SiO2 (εr = 2.1)
as composing materials of the design region. The incident source is a Gaussian wave with wavelength
1.55 µm. The FoM of a bending waveguide is calculated as conversion efficiency, or Ioutput

Iinput
.

2.2 Physics-guided diffusion models

In this work, we introduce a novel physics-guided diffusion model algorithm, AdjointDiffusion, which
utilizes the capabilities of DDPM [Ho et al., 2020] for the optimization of photonic structures. Our
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Figure 2: Schematics of the problem setup. The design region has a resolution of 64 × 64. The
incident Gaussian wave propagates from the left waveguide and is induced to the upper waveguide.
Both waveguides are composed of Silicon. The boundary condition of the simulation is perfectly
matched layer (PML), which absorbs outgoing waves from a computational domain.

method integrates DDPM with physical information by directly applying the adjoint gradient to the
inference process. While there have been approaches to integrate diffusion models with inverse
design [Zhang et al., 2023, Yang et al., 2024, Vlastelica et al., 2023], to our knowledge, no attempts
have been made to combine diffusion models with adjoint gradient values for optimization. The
overall process of our algorithm is shown below (see Section B for details):

Dataset construction. We first generate 30K binary grayscale images with 64 × 64 resolution.
Specifically, the pixels of each image were drawn uniformly at random from U [0, 1] and subsequently
discretized to have 0 or 1 by applying a threshold value (i.e., 0.5). Additionally, to incorporate
structural properties, we equally divide the dataset into three distinct parts (to produce 3 chunks of
10K images) and applied different Gaussian filters to each chunk. We use standard deviation values
of 2, 5 and 8 for the filters.

Model training. On the generated structural data, we train a diffusion model with the ADM
framework [Dhariwal and Nichol, 2021]. Specifically, we use 1000 timesteps (i.e., T = 1000) with
cosine noise schedule [Nichol and Dhariwal, 2021]. For the training objective, we focus on Lhybrid
proposed in [Nichol and Dhariwal, 2021] The fabrication constraints (i.e., the standard deviations
of Gaussian filters) are fed as a conditioning parameter σ. During this stage, the diffusion model
learns from the dataset to generate structures suitable for fabrication with respect to given fabrication
conditions σ.

Structure generation. To synthesize high-performance photonic structures with enhanced FoM, we
incorporate a FoM-maximizing guidance term into the standard sampling process of diffusion models
(e.g., ancestral sampling [Ho et al., 2020]). This guidance term is derived through a combination of
the pretrained diffusion model and adjoint gradient optimization. Specifically given an intermediate
structure εt, we predict its posterior mean ε̂0(εt) by employing the pretrained diffusion model and
Tweedie’s formula [Robbins, 1992]. We subsequently calculate the adjoint gradient of the predicted
structure ∇ε̂0

FoM(ε̂0(εt)) with direct and adjoint simulations. Our guidance term gt is the inner-
product of the Jacobian ∂ε̂0

∂εt
with the adjoint gradient ∇ε̂0

FoM(ε̂0(εt)). The process is represented
in Figure 1 (b). The calculated guidance term is incorporated in ancestral sampling to optimize
FoM of the intermediate structure εt, as described in Equation 1. The adjoint gradient is added
component-wise to the generated structures during the reverse process, which is illustrated in Figure 1
(c).

The proposed generation process built upon the standard ancestral sampling [Ho et al., 2020] is:

εt−1 = µθ(εt, t, σ) +Σ
1/2
θ (εt, t, σ)z + η∇εt FoM(ε̂0(εt)) (1)

where µθ and Σ
1/2
θ are mean and standard deviation of iterative Gaussian denoising process, respec-

tively, z ∼ N(0, I) represents a standard normal random vector, εt is the generated intermediate
structure during the denoising process, and ε̂0(εt) represents the posterior mean. Note that the update
is interpretable as optimizing the target metric (i.e., FoM) with respect to the posterior mean ε̂0(εt)
(instead of εt), sharing the same spirit as successful diffusion-based samplers that work with the
posterior mean to incorporate conditional information [Chung et al., 2022a, Um and Ye, 2024].

Post-processing. After completing the reverse process, we post-process the final generated structure
ε0 for further improvements. The post-processing consists of two stages: 1) binarization and 2)
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Figure 3: (a) The optimization process of each algorithm for 100 optimization steps. The red
line represents the mean efficiency, and the shaded red region shows the standard deviation for
AdjointDiffusion. The final structure’s efficiency after post-processing is marked with star-shaped
symbols. (b) Generated structures and the corresponding structural characteristics for each algorithm.
The structural components with Minimum Feature Size (MFS) are highlighted with a red boundary.

island deletion. Firstly, since our algorithm does not use conic filters, there is a possibility that a
pixel with an adjoint gradient value has an opposite sign from nearby pixels. This issue can degrade
the fabricability due to the low minimum feature size (MFS). The problem is also observed in
adjoint-based nonlinear algorithms, such as those provided in NLopt [Johnson, 2007]. To address
this, we apply post-processing after binarization across all algorithms. Additionally, we analyze the
FoM change resulting from our post-processing (Section D).

Our algorithm exploits the stochastic nature of deep-generative models to overcome local optima
while addressing the challenges of conventional adjoint-based methods. Firstly, our framework has
minimal reliance on hyperparameters. By utilizing a diffusion model trained on binary data, our
sampling process inherently generates binary structures, omitting complex binarization schedules
and extensive hyperparameter tuning. Secondly, our algorithm has high computational efficiency,
requiring only a small number of adjoint simulations (∼ 102) compared to existing deep learning
methods where data requirement ranges from ∼ 105 [Jiang and Fan, 2019, Park et al., 2023] to
∼ 106 [Seo et al., 2022] for one-dimensional free-form design.

3 Results and Discussion

We provide a comparison of AdjointDiffusion with conventional nonlinear adjoint optimization
algorithm benchmarks such as MMA [Svanberg, 2002] and SLSQP [Kraft, 1988, 1994], where the
details are discussed in Section A. Due to the stochasticity of the generative process, we set the
experimental seeds of Adjointdiffusion to 3. Each process generates different structures, as shown in
Section C.4, providing diverse design options.

Number of simulations. From the viewpoint of computational efficiency, the number of simulations
required for the algorithm is an important factor. Adjoint sensitivity analysis requires two simulations
per one optimization step, We note that the reverse process of AdjointDiffusion can take any step
numbers [Nichol and Dhariwal, 2021, Dhariwal and Nichol, 2021] and we set the step numbers as 60,
80, 100, 120, and 140.

Structural characteristics. The feature length is set to three distinct values: 0.224, 0.562, and
0.895, corresponding to Gaussian filter standard deviations of σ = 2, σ = 5, and σ = 8, respectively.
The detailed derivation of these values is provided in Section C. Additionally, we quantify the number
of ’islands’ formed within the generated structure and assess its Minimum Feature Size (MFS).

Figure 3 shows the iterative optimization steps of algorithms. The result shows that AdjointDiffusion
finds the optimal structure and has robustness to binarization.

In Figure 4, we compare the optimization results of our algorithm with multiple baseline algorithms.
The result shows that AdjointDiffusion outperforms nonlinear algorithms and a vanilla gradient ascent
algorithm (GA). Error bars in the red graphs represent the standard deviation from stochasticity.
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Figure 4: The efficiency of generated structures with different feature lengths and optimization steps

1st step 40th step 80th step 100th step 

eff = 0.032 eff = 0.985 eff = 0.995 eff = 0.996

Figure 5: Pixel value distribution of εt at each optimization step. By the 40th step, the distribution
shifts to increase efficiency to 0.985. By the 80th step, the diffusion prior separates the distribution
into two distinct groups, initiating binarization. By the 100th step, the structure is mostly binarized.

Figure 6: Efficiency of generated final structure from AdjointDiffusion. Error bars represent the
standard deviation of efficiency.

We analyze the reason for effective binarization observed in our algorithm. Figure 5 shows the
histogram of pixel values for the generated structure εt at each step t. The analysis implies that the
binary prior of our diffusion model naturally performs binarization despite stochasticity, and this
process works effectively in conjunction with the adjoint method. This can be interpreted as the
manifold-preserving property often observed in gradients with respect to the posterior mean [Chung
et al., 2022a, Um and Ye, 2024, Chung et al., 2022b].

Figure 6 illustrates the impact of varying the step size η, which is a coefficient multiplied to the
additional adjoint gradient term in diffusion inference, on the performance of AdjointDiffusion. At
η = 0, the generation process is efficiency-agnostic, resulting in random generation based only on
the datasets. For values such as η = 0.5, 1, 1.5, 2 and 2.5, optimization is applied to the structures.
While performance may decrease when η is 2 or higher, values around η = 1 show robustness of the
algorithm performance, consistently approaching optimal efficiency (1.00 in the graph).
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A Baseline Algorithms

Adjoint optimization. Adjoint optimization [Miller, 2012] uses adjoint sensitivity analysis to
compute the adjoint gradient and update each coordinate with the gradient value. For example, taking
an optical lens as an example (Figure 1(b)), the FoM for optimization is the intensity of the electric
field (Edir) at a focal point (xf ) generated by an incident plane wave from below:

FoM =
1

2
|Edir(xf )|2. (2)

First, we define the structural parameter as a permittivity indicator (ε), where ε = 1 represents a
material with higher permittivity (e.g., Si) and ε = 0 represents a material with lower permittivity
(e.g., Air). For convenience, we refer to this value as permittivity. Initially, we set all coordinate
permittivity values to 0.5 as the initial guess for the structure. Next, we determine the figure of merit
(FoM) value through a direct simulation induced by an incident plane wave. In the direct simulation,
the electric field at the target point Edir(xf ) is computed and subsequently used as amplitudes of
the adjoint sources, while Edir (x′) at the design area is saved for the purpose of adjoint gradient
calculation.

The variation in FoM by the transmitted electric field is

δFoM =
1

2

[
Edir(xf ) + δE(xf )

] [
Edir(xf ) + δE(xf )

]
− 1

2
Edir(xf )Edir(xf )

=
1

2

[
Edir(xf )δE(xf ) + Edir(xf )δE(xf ) + |δE(xf )|2

]
≈ Re

[
Edir(xf )δEdir(xf )

]
.

(3)

The variation of the electric field at point xf , caused by the adjustment in the permittivity of the
design space, can be expressed as

δEdir(xf ) = G(xf ,x
′)Pind(x′) = G(xf ,x

′)δε(x′)Edir(x′), (4)

where x and x′ indicate the positions in the monitor and the design space, respectively. Pind(x′)
indicates the polarization density, which is induced by the variation of the permittivity δε(x′).
←→
G (xf ,x

′) is a Green’s function which represents the electric field at the point xf generated by the
unit dipole at the point x′. The formula for the change in FoM becomes

δFoM = Re
[
G(xf ,x

′)Edir(xf )δε(x
′)Edir(x′)

]
. (5)

The adjoint field Eadj can be expressed as

Eadj(x′) = G(xf ,x
′)Edir(xf ). (6)

Subsequently, the amplitude of the adjoint dipole source becomes Edir(xf ). The adjoint dipole
sources backpropagate through the designable region and generate Eadj (x′). Finally, the gradient of
the FoM with respect to changes in ε(x′) within the design region is computed as

δFoM
δε(x′)

= Re[Edir(x′)Eadj(x′)] (7)

which is called the adjoint gradient value. This gradient indicates how the design parameters should
be adjusted to improve FoM. Typically, this adjustment is performed using a gradient ascent algorithm
with a learning rate η:

εi+1 = εi + η∇εi
FoM(εi) . (8)
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After each step, since the generated structures are in grayscale, a binarization process is required.
Binarization is scheduled to operate less intensively at the beginning and more intensively towards
the end. This process is governed by two factors, β and ζ:

ε′ =
tanh (β ∗ ζ) + tanh (β ∗ (ε− ζ))

tanh (β ∗ ζ) + tanh (β ∗ (1− ζ))
(9)

β is a scalar that modulates the extent of binarization applied to the structures. β starts small in the
initial stages and progressively increases, meaning more binarization is applied as the optimization
proceeds. ζ serves as a threshold value for binarization, with every element being 0.5. 1 is an all-ones
matrix. Note that all operations (multiplication, subtraction, tanh) are performed element-wise on the
matrices.

Adjoint optimization with nonlinear optimization algorithm. Gradient ascent algorithms
fall into local optima in nonconvex objective functions. To resolve this issue, researchers utilize
nonlinear optimization algorithms that search the entire function space for the global optimum.
From the open-source library named NLopt [Johnson, 2007], we import MMA (Method of Moving
Asymptotes) [Svanberg, 2002] and SLSQP (Sequential Least Squares Quadratic Programming) [Kraft,
1988, 1994] as baseline algorithms. Both are gradient-based local optimization algorithms that are
generally used in adjoint optimization due to their robustness in handling complex constraints and
non-convex problems.

1) MMA creates a local approximation using the gradient of the function along with a quadratic
penalty term to ensure cautious approximations. The key idea is that the approximation is both convex
and separable, making it easy to solve using a dual method. This solution provides a new candidate
point that is then evaluated. If the approximations are conservative, the process restarts at the new
point; if not, the penalty is increased, and the problem is re-optimized.

2) SLSQP is a sequential quadratic programming (SQP) algorithm designed to solve nonlinear
optimization problems by breaking them down into simpler quadratic programming (QP) subproblems.
It works by using a second-order Taylor expansion to approximate the objective function and linearize
the constraints. The algorithm iteratively refines the solution until it meets the convergence criteria.
If the criteria are not met, the process is repeated.
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B Implementation Details of AdjointDiffusion

Network architecture. The neural network architecture we used for our diffusion backbone is based
on U-Net [Ronneberger et al., 2015]. More precisely, we employed an improved version of U-Net
presented in [Dhariwal and Nichol, 2021], which is specifically tailored for diffusion models. For
architectural design choices, We mostly followed the default setting recommended in the original
codebase of [Dhariwal and Nichol, 2021]1. A distinction is that we used the number of input channels
as 1, since we consider grayscale images for inputs. Structural information σ is first added with
time embedding t and fed in the form of adaptive group normalization (i.e., the same approach as
in [Dhariwal and Nichol, 2021]). See Figure 7 for an overall illustration.

Figure 7: Architecture of the diffusion model employed in AdjointDiffusion. Here, channel number
C = 128 and spatial dimensions H = 64, W = 64. The model consists of multiple stages
with convolutional layers (Conv), residual blocks (ResBlock), downsampling layers (Downsample),
attention mechanisms (Attention), and upsampling layers (Upsample). The conditional information,
consisting of time step t and structural parameter σ, is embedded and added to each convolutional layer
and residual block. The dimensions of the feature maps are progressively reduced and then increased,
with skip connections linking corresponding layers across the downsampling and upsampling stages.
Group normalization (GroupNorm) is applied to stabilize training.

Training setup. The total number of timesteps is T = 1000, and we use cosine noise schedule [Nichol
and Dhariwal, 2021]. As in [Dhariwal and Nichol, 2021], For model training, we focus on Lhybrid
(proposed in [Nichol and Dhariwal, 2021]) to additionally learn the noise variance Σθ(·, ·) for better
performance when accelerating the sampling process. The training is performed with a learning rate
of 1e-4, and the batch size is 128.

Inference details. We globally use η = 1.0 and 100 diffusion timesteps for sampling on both
tasks (i.e., waveguide and CIS), while admitting variations whenever necessary (e.g., for ablation
studies). As in [Sehwag et al., 2022, Um and Ye, 2024], we normalize the gradient (integrated
in the reverse process) to have unit l∞ norm. More precisely, we employ ∇∗

εt
FoM(ε̂0 (εt)) :=

∇εt
FoM(ε̂0 (εt)) /∥∇εt

FoM(ε̂0 (εt)) ∥∞ instead of∇εt
FoM(ε̂0 (εt)).

Pseudocode. We provide pseudocode which represents training and sampling processes of
AdjointDiffusion:

1https://github.com/openai/guided-diffusion
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Algorithm 1 DDPM training [Ho et al., 2020]
1: repeat
2: ε0 ∼ q(ε0)
3: t ∼ Uniform({1, . . . , T})
4: σ ∼ Uniform({2, 5, 8}) ▷ feature length para.
5: z ∼ N (0, I)
6: Take gradient descent step on

∇θ

∥∥z − zθ(
√
ᾱtε0 +

√
1− ᾱtz, t, σ)

∥∥2

7: until converged

Algorithm 2 Physics-guided sampling

1: εT ∼ N (0, I)
2: for t← T to 1 do
3: ξ ∼ N (0, I) if t > 1, else ξ = 0

4: ε′
t−1 ← 1√

αt

(
εt − 1−αt√

1−ᾱt
zθ(εt, t, σ)

)
+ ςtξ

5: εt−1 ← ε′
t−1 + η∇εt FoM(ε̂0 (εt))

6: end for
return ε0
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C Calculation Method of Feature Length in Structure Generation

C.1 Feature Length [pixels] from Gaussian filter (in image database)

The Gaussian filter is a technique commonly used in image processing to smooth out and reduce
noise. The minimum length of a structure that a Gaussian filter can resolve is related to the filter’s
standard deviation (σ), and the value determines the extent of blurring.

The full-width at half-maximum (FWHM) of the Gaussian function describes the effective spread of
the filter. The FWHM is related to the standard deviation by the following formula:

FWHM = 2
√
2 ln 2 · σ (10)

which calculates the width of the Gaussian function at half of its maximum value. The Feature
Length, which we define as the minimum structure size that can be resolved by the Gaussian filter, is
approximately equivalent to the FWHM.

C.2 Feature Length [µm] (in simulation)

In Meep [Oskooi et al., 2010] simulation, the Feature Length in micrometers [µm] is calculated as
the Feature Length in pixels divided by the simulation resolution. In our setup, we set the simulation
resolution value as 21.

C.3 Calculation

We calculate the Feature Length of each dataset by applying Gaussian filter standard deviations
σ = 2, 5, 8 to Equation 10, with the results presented in Table 1.

Table 1: Relationship between Gaussian filter standard deviation σ, Feature Length in pixels, and
Feature Length in micrometers (µm).

σ Feature Length [pixels] Feature Length [µm]
2 4.7 0.224
5 11.8 0.562
8 18.8 0.895
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C.4 Generated Structures

We provide the generated structures from each algorithm. In Figure 8, the structures produced by
AdjointDiffusion, MMA, and SLSQP exhibit similar characteristic sizes. For the Gradient Ascent (GA)
algorithm, we use the same simulation setup, but the Feature Length is not applied as expected, likely
due to an issue with the Conic Filter. However, the smaller Feature Length does not disadvantage
GA, so we report the results as they are.

0.85810.88020.5496

0.9538 0.9001 0.9873

0.9944 0.9633 0.9823

AdjointDiffusion MMA SLSQP GA

0.6197 0.8698 0.1794

(a) Feature Length: 0.224

(b) Feature Length: 0.562

(c) Feature Length: 0.895

AdjointDiffusion MMA SLSQP GA

AdjointDiffusion MMA SLSQP GA

0.037

0.242

0.5756 0.0549

0.0025 0.2012

eff

eff

eff

Figure 8: Generated structures for different Feature Lengths [µm] of (a) 0.224, (b) 0.562, and (c)
0.895 using various algorithms. The efficiency (eff) for each algorithm (AdjointDiffusion, MMA,
SLSQP, GA) is provided below the corresponding structures.
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D FoM Degradation from Post-processing

We analyze the degradation of the Figure of Merit (FoM) following post-processing, which includes
binarization and island deletion.

D.1 Adjoint Optimization

Using MMA as an example, we observe that, while it achieves a high FoM during the optimization
process, the algorithm is particularly vulnerable to post-processing steps, such as binarization and
island deletion.

Figure 9: Efficiency comparison before and after post-processing of MMA for the Bending Waveguide
over various numbers of optimization steps. The blue line represents efficiency before post-processing,
while the orange line represents efficiency after post-processing.

Before Postprocess

A�er Postprocess

Total Number of Steps 60 80 100 120 140

Figure 10: Visual comparison of generated structures before and after post-processing of MMA at
different numbers of optimization steps. The top row shows the structures before post-processing,
and the bottom row shows the corresponding structures after post-processing.
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D.2 AdjointDiffusion

AdjointDiffusion consistently remains robust to binarization and sometimes even demonstrates an
unexpected improvement in FoM after post-processing.

Figure 11: Efficiency comparison before and after post-processing of AdjointDiffusion for the Bending
Waveguide over various numbers of optimization steps. The blue region represents the mean and
standard deviation of efficiency before post-processing, while the orange region represents the mean
and standard deviation of efficiency after post-processing.

Before Postprocess

A�er Postprocess

Total Number of Steps 60 80 100 120 140

Figure 12: Visual comparison of generated structures before and after post-processing of Adjoint-
Diffusion at different numbers of optimization steps. The top row shows the structures before
post-processing, and the bottom row shows the corresponding structures after post-processing.
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E Visualization of Simulation Results

In this section, we present the simulation results. The blue outlines represent the design boundaries,
with the red line indicating the source and the blue lines indicating the electric field monitors.

Figure 13, 15, and 17 provide a visualization of the simulation results, showing the evolution of the
field distribution at various stages of the simulation. The color gradients illustrate the intensity and
phase of wave propagation through the structure. The four parts of the figure correspond to specific
points in the simulation timeline, capturing changes in the electromagnetic field as it interacts with
the structure.

E.1 Optimized Structure from AdjointDiffusion

Figure 13: The evolution of the field distribution across different stages of the simulation

E.2 Structures based on Human Intuition

We additionally provide the visualized simulation results of two kinds of design based on human
intuition.

Figure 14: Right-angled waveguide

Figure 15: The evolution of the field distribution across different stages of the simulation for structure
in Figure 14. The efficiency of this structure is 0.0011.

16



Figure 16: Curved waveguide

Figure 17: The evolution of the field distribution across different stages of the simulation for structure
in Figure 16. The efficiency of this structure is 0.8271.
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