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Abstract

We develop a hybrid GNN-CNN architecture for the reconstruction of 3-
dimensional continuous cosmological matter fields from discrete point clouds,
provided by observed galaxy catalogs. Using the CAMELS hydrodynamical cos-
mological simulations we demonstrate that the proposed architecture allows for
an accurate reconstruction of both the dark matter and electron density given ob-
served galaxies and their features. Our approach includes a learned grid assignment
scheme that improves over the traditional cloud-in-cell method. Our method can
improve cosmological analyses in situations where non-luminous (and thus un-
observable) continuous fields need to be estimated from luminous (observable)
discrete point cloud tracers.

1 Introduction

The spatial distribution of cosmological fields, such as densities of dark matter and ionized gas
(referred to below as electrons), carries important information about the history of the evolution of the
Universe. For example, knowledge about the distribution of the electrons would increase the quality
of large-scale velocity reconstruction with kinetic Sunyaev-Zeldovich effect [1] or would be helpful
in understanding the nature of dark matter through the resonant conversion [2, 3, 4]. More generally,
knowledge of the dark matter map allows for cross-correlation studies with various probes from the
electromagnetic wave spectrum, such as intensity mapping, as well as with gravitational wave sources.
While being a rich source of information, continuous density fields are largely unobservable as we
can only directly see the luminous matter - position and properties of galaxies - at a discrete sparse
set of points in space. Hence, developing a method to efficiently reconstruct the former from the latter
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is an important task. On large scales, the number density of galaxies and the density of dark matter
or electrons are linearly related. On small scales, non-linear gravitational evolution and baryonic
interactions in the interstellar/intergalactic medium become relevant and are usually modelled with
numerical simulations. Simulations can then be used to learn or approximate different aspects of
underlying physical processes.

Significant effort has recently been focused in the direction of both simulations and ML-based
modeling in cosmology. To name a few, [5, 6, 7, 8, 9] used various AI models, such as generative
adversarial networks and denoising diffusion models, to increase the resolution of the cosmological
simulations - a task commonly known as superresolution; [10, 11] developed a field-level emulator of
cosmological large-scale structure; [12] showed that the effects of baryonic physics can be emulated
by a simple transfer function, applied to a (gravity-only) simulated dark matter field.

Specifically for our task, recently in [13, 14] it was shown that diffusion models are capable of
reconstructing dark matter fields from observed galaxy fields. However, these works did not treat the
discrete tracers as a point cloud and were only demonstrated in 2-dimensions. A possible approach to
our reconstruction problem is to first assign the point objects to pixels and then treat the reconstruction
with a field-to-field machine learning model such as a U-Net, as in [15]. However, the grid assignment
is inherently sub-optimal at finite resolution. The observed late-time galaxy distribution is discrete
and non-uniform on small scales, forming structures such as filaments, clusters and voids, collectively
known as the cosmic web. Assigning density to a regular grid therefore results in very sparse regions
where the density is low and the loss of information in regions where the density is higher than the
grid resolution. On the other hand, the distribution of dark matter or electron densities is inherently
continuous and can naturally be represented with a structured (regular) grid.

The limitations of learning from unstructured discrete objects can be circumvented with Graph Neural
Networks (GNN). They provide the natural representation of observed galaxy catalogs, which are in
the form of tables with spatial position, redshift, luminosity and other properties. These qualities of
GNNs were recently leveraged to build models capable of inferring cosmological parameters and dark
matter halo masses directly from galaxy catalogs [16, 17, 18], emulating the late-time dark-matter
halo distribution from N-body simulations [19], or learning baryonic properties of galaxies [20]. In
this work, we develop a deterministic hybrid GNN-CNN model that is trained to output the continuous
cosmological density fields directly from the galaxy catalogs1. We show that the proposed setup is
successful in capturing non-linear information in cosmological fields and their correlation functions,
both for dark matter and baryons.

2 Methodology
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Figure 1: Visualization of the input and output. A graph constructed from the galaxy catalog (before
the galaxy selection cuts) is depicted on the left (rlink = 3 Mpc/h). The underlying continuous dark
matter density field is shown on the right. The color scheme normalization is logarithmic. Our goal is
to estimate the field on the right from the points on the left.

1The code is publicly available at https://github.com/ykvasiuk/g2fnet
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Figure 2: Grid Aggregation Procedure. Given the grid
points (black) and the galaxy graph node (red dot), we
choose all the grid points within a certain distance (red
sphere) to the graph point and assign them the values
weighted with learned radial kernel ϕMLP (r).

2.1 Architecture

Our proposed architecture consists of three steps and is motivated by the common encoder-decoder
setup. The message-passing GNN block is used as an encoder. Then the output of the GNN block is
assigned to a regular grid to form proto-density fields which then are passed to the CNN block. Since
the target fields are represented by a regular spatial grid, convolutional neural nets are the natural
choice for the decoder. For the GNN block, we use a modification of the graph message-passing
scheme [21] that also was used in [18] for cosmological parameter inference from galaxy catalogs.
The nodes of the graph are formed with scalar galaxy properties, the edge features are constructed
from pairwise differences of positions, so that the network preserves translational symmetry. We
define connectivity of the graph by providing a minimal linking length, rlink, that is one of the
hyperparameters of the model. The graph might also have global features that in our case represent
cosmological and astrophysical parameters. Given node features wi, edge features eij, and optionally
global features u, one message-passing step involves two operations:

1. e
′

ij ←↩ ϕe(wi,wj, eij, (u)) 2. w
′

i ←↩ ϕw(wi,
⊕

j∈Ni
e′ij, (u)).

We parametrize ϕw and ϕe with MLPs. "
⊕

" represents the permutation invariant aggregation
operation that collects messages from all the edges adjacent to the node. The GNN block creates
updated latent node features that we assign to the regular grid at a specified resolution. For this, we
developed a grid aggregation layer that is depicted in Fig. (2) and works as follows. The input galaxy
point cloud and the grid are viewed as a bipartite graph. We assign connectivity given radius rlink
with a modified torch_cluster.radius function to account for the periodic boundaries. Then
messages from the neighbors are aggregated to the corresponding grid points, with their contributions
scaled according to a learned radial weighting kernel. This weighting kernel is derived by inputting the
squared distances between the galaxy point cloud and the grid locations into a MLP with three fully
connected layers and two ReLU activation functions. Then the formed fields are passed through the
CNN-decoder that we represent with a UNet [22]. We employ skip-connection in the convolutional
layers of the UNet encoder. We also use circular-padded convolutions to account for the periodic
structure of the box.

To summarize, given initial scalar galaxy properties s0i , coordinates xi, and optional global parameters
u, the target densities are formed according to the following algorithm:

1. w′
i = mpgnn(s0i , e

0
ij, (u)) 2. δin = grid_aggregate(w

′

i,xi) 3. δ̂ = unet(δin).

2.2 Dataset

For training, we use snapshots and SUBFIND subhalo/galaxy catalogs of IllustrisTNG-LH suite
of CAMELS [23, 24, 25] simulation set at redshift z = 0. Each simulation follows the evolution
of 2563 dark matter and 2563 gas particles in a box with a length of 25 Mpc/h. There are 1000
simulations in total from this subset. They have variable cosmological parameters Ωm and σ8, as
well as astrophysical parameters ASN1,2, AGN1,2 that represent the effects of stellar winds and the
influence of the active galactic nuclei. We use 27 simulations from the CV subset to evaluate the
performance of the trained models. These simulations have fixed cosmological parameters and differ
only by initial random seed.

2.3 Training

We are constructing the simulated input galaxy catalogs from FOF-Subfind subhalo catalogs of
CAMELS-IllustrisTNG simulations. We follow the selection criteria of [26]:
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• Both stellar and dark matter half-mass radii are larger than two Plummer radii (Rp =
0.74 kpc).

• The number of both stellar and dark matter particles is larger than 200.
• Every subhalo is assumed to be a separate galaxy.

After applying the selection cuts, we have O(200) galaxies in a 253 (Mpc/h)3 volume. While not a
fully realistic galaxy data set, our selection is broadly compatible with the data from ongoing and
future high-density galaxy surveys. The number density of galaxies after the cuts in our data set is
approximately 10 times higher than the one of DESI at z = 1, but somewhat below the expected
number density of Rubin Observatory [27, 28].

We then generate the graph corresponding to the galaxy catalogue. The graph nodes are generated
from scalar features such as stellar mass, or velocity dispersion. We construct translationally invariant
graph edge features from pairwise differences of vector quantities, like positions. The complete set of
features used and their normalization are listed in Appendix A. We found that it is sufficient to have
one message-passing layer with rlink = 2 Mpc/h. We experimented with larger values of rlink but
didn’t find a significant improvement. The targets are the corresponding electron and dark matter
overdensities, δe and δm, that we put on a downsampled grid of 1283 pixels. We use the AdamW
[29] optimizer with the learning rate lr = 2× 10−3 and weight decay wd = 2× 10−2 to minimize
ordinary l1 loss (which we found to perform better than l2):

l1 =
∑

f=δe,δm

∣∣∣f̂ − f true
∣∣∣ . (1)

Here, f̂ stands for the output of the model. Out of 1000 simulations of LH suite, we use 850 first ones
for training and keep 150 last ones to track the validation loss. We train two versions of the model, one
that doesn’t know about the true simulation parameters and the other that has access to them explicitly
in the form of global features of the graph. More precisely, let us define P (f , θ|g) - a probability of
the true density fields f and parameters θ given the observed galaxy cloud g, represented as a graph.
In the first case, we learn the median of the marginalized (over the parameters) probability density
function

P (f |g) =
∫

dθP (f , θ|g). (2)

In the second scenario, we learn the median of

P (f , θ = θ∗|g) ∝ P (f |g, θ∗). (3)

2.4 Performance metrics

We evaluate the cross-correlation coefficient of the Fourier modes as a function of the magnitude of a
wave vector k to evaluate the performance of our model. It is defined as follows:

r2(k) =
⟨XtrueX̂⟩2

⟨X2
true⟩⟨X̂2⟩

. (4)

The cross-correlation coefficient is the relevant quantity for most practical applications, which involve
cross-correlation of different data sets.

3 Results

As discussed, to isolate the effects of variable cosmological and astrophysical parameters from the
ability of the model to learn, we trained two different models with and without known parameters.
As a baseline to compare the cross-correlation to, we took a stellar density field δ∗ that we computed
by weighting galaxies by their stellar mass and gridding them with the cloud-in-cell (CIC) procedure.
This quantity is directly observable through stellar luminosity and correlates well with the true dark
matter distribution on large scales. If treated as a tracer of dark matter, it would assume that the
amount of dark matter is proportional to the mass of the observed galaxy which is located at its
position. That’s not the case on smaller length scales and we expect our machine learning model to
perform better there. Indeed, as we see from Fig. (3) (and Fig. (4) in the Appendix B), the neural
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Figure 3: Left: The cross-correlation coefficient Eq. 4 of the reconstructed conditional and marginal-
ized dark matter density, δNN,cond (blue) and δNN (orange) correspondingly, and stellar mass field
δ∗ (green) with a true dark matter density field as a function of wave vector k. Right: The same but
for the electron density field. The shaded region indicates a 1-σ contour.

network is able to reconstruct both dark matter and electron densities from the galaxy features at high
fidelity. The model is noticeably better for dark-matter density, though. The reason for this is that the
distribution of galaxies itself is better correlated with the underlying dark matter density. The effect
of known vs. unknown cosmological and astrophysical parameters manifests itself in marginally
improving the mean cross-correlation coefficient for electron density reconstruction. This surprising
lack of improvement (compared to the unconditional case) can be attributed to the fact that the neural
net is able to learn the cosmological and astrophysical parameters implicitly in the case where we do
not provide them. Generally, our results are encouraging for practical applications. For example, for
kSZ velocity reconstruction [30, 31, 32], the expected noise of the observable scales as N ∝ r−2

([1]) where r is the reconstruction coefficient of the baryon density. Comparing to Fig. 3, this can be
up to a factor of 2 improvement in the relevant k-range. A visualization of model input and output is
shown in Fig. 5 and 6 of Appendix C.

4 Conclusions and Outlook

We’ve designed a hybrid GNN-CNN-based model for the reconstruction of cosmological fields
directly from galaxy catalogs. The benefit of this approach is that there is no need for a pre-processing
step of gridding the catalog. The graph structure allows a more straightforward way to incorporate
the galaxy features directly as node attributes and positional and kinematic variables as edge features.
The proposed approach nicely bridges the gap between the discreteness of observable tracers and
the continuous nature of a field-level analysis and opens new possibilities for various simulation- or
forward-modeling-based inference schemes directly on the catalog level.

There are several interesting future directions. First, it’s important to consider a more realistic scenario,
where we also incorporate the corresponding uncertainties of the observed quantities. One way to
do so is to add some noise to the node and edge features. An additional level of realism is to add a
survey mask and redshift evolution. It would be very interesting to forecast the performance of our
method for Rubin Observatory. The very high galaxy number density of this experiment could benefit
our method, while its photometric redshift errors may decrease the performance. Another important
aspect is robustness. It would be useful to cross-check the performance on other hydrodynamical
simulations with different subgrid models. Fortunately, for some applications (in particular squeezed
limit observables), baryonic uncertainty in the machine learning model of the small-scale field can
be handled by a bias parameter [1]. One could also perform a probabilistic rather than deterministic
reconstruction. The proposed architecture can be used as a conditional encoder for a denoising
diffusion or a normalizing flow architecture. In that way, one would reconstruct the whole conditional
probability density of the true field given the observed one. In two dimensions at field level this was
recently done in [13, 14]. However, in many situations in cosmology, sampling over the conditional
probability density is computationally prohibitive and a deterministic approach, as presented here, is
sufficient.
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A Full set of input features and normalization

We used the following galaxy features for training:

• x⃗ - Galaxy position
• r, g, z - Magnitudes of r,g, and z luminosity bands
• r1/2 - Stellar half-mass radius
• M∗ - Stellar mass
• σv - Velocity dispersion

Coordinates are normalized by the sidelength of the box and vary in the unit range. Magnitudes
of the luminosity bands are normalized to have zero mean and unit variance. All other features -
stellar mass, stellar half-mass radius, and velocity dispersion - are log-normalized, so that log10 of
the corresponding quantity has zero mean and the variance of one.

B Signal-to-noise ratio

Another useful quality measure is the signal-to-noise ratio of the reconstructed field:

SNR(k) =
⟨|Xtrue|2⟩

⟨|X̂ −Xtrue|2⟩
(5)

Fig. (4) shows the SNR for the reconstructed dark matter (left) and electron densities (right) with both
the marginalized (blue) and conditioned on the cosmological and astrophysical parameters (orange)
models. We can see that the effect of global parameters on the mean SNR is more pronounced for the
dark matter reconstruction. The conditional model also has smaller variance, as can be seen from the
size of the corresponding 1σ regions.
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Figure 4: Left: The signal-to-noise ratio of the reconstructed conditional and marginalized dark
matter density δNN,cond (blue), δNN (orange) correspondingly. Right: The same but for the electron
density field.

C Model Input and Output Visualization

We provide visual examples of the input and output data in Fig. 5 and 6.
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Figure 5: True (left) and predicted (middle) dark matter (bottom row) and electron (top row) densities
in a 5 × 25 × 25 (Mpc/h)3 volume, averaged over the x axis. The rightmost column shows the
visualization of the input - galaxy cloud in the same region as a graph (top) and density field (bottom).
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Figure 6: Same as Fig. 5, but in a zoomed-in volume of 5× 12.5× 12.5 (Mpc/h)3.
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