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Abstract

In this work, we present a unified approach to cosmological parameter inference
and initial condition reconstruction using Stochastic Interpolants and normalizing
flows. We apply this method to jointly reconstruct simulations of non-linear
dark matter fields and infer simulator parameters, demonstrating its accuracy and
scalability with dataset size. We show that the amortized learned distribution
reproduces the posterior obtained with Hamiltonian Monte Carlo without the need
for a differentiable forward model or explicit likelihood. Additionally, we introduce
a flexible framework for controllable simulators that impose partial constraints,
showcasing its potential in generating tailored simulations. This work provides a
scalable and accurate approach for reconstructing initial conditions in cosmological
simulations, with broad implications for upcoming galaxy surveys such as DESI.

1 Introduction

Simulations are fundamental in scientific research, offering insights into the causal structure of
complex problems that may be too costly or impossible to replicate experimentally. Unlike fields
where controlled laboratory experiments are feasible, astrophysics relies on the Universe itself as
a natural experiment, making simulations essential as its primary laboratory. A key challenge is
simulating structures that either replicate a given observation or produce a desired outcome. In this
paper, we address the problem of jointly inferring the initial conditions and parameters of scientific
simulators, from either an observation or a desired constraint, that lead to simulations that are
consistent with an observation.

In cosmology, where the goal is to simulate the Universe on its largest scales, inferring the initial
conditions that give rise to an observable requires navigating a parameter space with over 108

dimensions. Traditionally, [1–4] combined differentiable simulators [1, 5, 6] with Hamiltonian
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Figure 1: Example initial conditions reconstruction, δICs, and parameter inference, θ, starting from a
constraint (here, number of pixels above a certain threshold, δthreshold), or an observation δObs.

Monte Carlo (HMC) samplers to tackle this issue. More recently, [7] demonstrated that diffusion
models can also approximate the distribution of initial conditions given an observation. Crucially,
generative models that directly learn the posterior do not require a differentiable simulator or an
explicit likelihood. Here, we extend this line of work by, i) replacing the diffusion model with
a Stochastic Interpolant (SI) approach, ii) jointly constraining both the initial conditions and the
simulator parameters, and iii) comparing the inferred posteriors with those obtained using HMC,
particularly as the number of simulations used for training is varied.

Additionally, in hydrodynamical simulations of galaxy formation, precise control over initial condi-
tions is vital for understanding the formation of different structures. For instance, simulating a Milky
Way-like galaxy often involves imposing equilibrium constraints or using zoom-in simulations to
find a galaxy that meets approximate criteria. However, these methods lack true controllability. We
demonstrate how an amortized initial condition sampler can be combined with conditional generators
to control the outcomes of simulations when only partial constraints are available, rather than a full
observation.

2 Conditional sampling with Stochastic Interpolants

We aim to constrain the joint distribution of initial conditions, δICs, and simulator parameters, θ,
given an observation, δObs, or a constraint, C, that we wish our observation to satisfy. Let us first
focus on the former problem, we will delve into the latter in Section 3.3. Here, we decompose the
joint distribution over initial conditions and parameters into its conditionals:

p(δICs, θ|δObs) = p(δICs|δObs)p(θ|δICs, δObs), (1)

with a focus on cases where the initial conditions have the same dimensionality as the observations,
while the simulator parameters are relatively lower-dimensional. The problem setup and example
variables are summarized in Figure 1.

Our approach differs from that of Gibbs sampling [8]. While the method proposed by [8] offers the
advantage of explicitly coupling two conditional models into a single diffusion model, this comes at
the cost of increased computational expense due to the need for running HMCs over the diffusion
model likelihood. In contrast, our inference process is fully amortized. Through experiments, we
demonstrate that training the two models independently still yields reliable inference.

In this framework, p(θ|δICs, δObs) can be effectively modeled using a Masked Autoregressive Flow
(MAF) [9]. Details of the MAF architecture are provided in Appendix A. For p(δICs|δObs), we note
that in cosmological simulations the evolved fields are typically more clustered versions of the initial
conditions, with objects displaced by approximately 10Mpch−1 due to non-linear gravitational
evolution. Hence, it is natural to model p(δICs|δObs) as a mapping between the distributions of initial
and final densities, rather than mapping the initial conditions from a normal prior, as done in standard
diffusion models [7].

To do this, we employ the formulation of Stochastic Interpolants described in [10, 11] that allows
to think about predicting the initial conditions as a problem of probabilistic forecasting. Given an
observation δObs, we seek to generate a forecast, or probabilistic ensemble, of possible δICs associated
to it. In particular we build an interpolant, Is,

Is = αsx0 + βsx1 + σsWs, (2)
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Figure 2: Cross correlation coefficient between reconstructed initial conditions and true initial
conditions as a function of the number of simulations used for training, for two different box sizes and
resolutions. The dashed lines show the mean and standard deviation of posterior samples obtained
with HMC. We show the cross correlation coefficient evaluated at large and small scales , together
with the integral over the entire scale range.

where Ws is a Wiener process, that can be sampled by Ws =
√
sz with z ∼ N (0, I). The interpolant

maps a point mass measure at x0 to p(xs|x0) as s varies from 0 to 1. The interpolant boundary
conditions are α0 = β1 = 1, and α1 = β0 = σ1 = 0. Here, we also chose αs = σs = 1 − s, and
βs = s2. These boundary conditions imply x0 = δObs and x1 = δICs.

The conditional distribution defined by the interpolant, p(Is|x0), is also the law of the solution to a
SDE that be used as a generative model [11],

dXs = bs(xs, x0)ds+ σsdWs, Xs=0 = x0, (3)

whose drift bs we solve for parametrizing a neural network ansatz b̂s(x, x0) and minimizing the
objective

Lb

[
b̂s

]
=

∫ 1

0

dsE
[
|b̂s(Is, x0, s)−Rs|2

]
, (4)

and Rs is determined by the interpolant, Rs = α̇sx0 + β̇sx1 + σ̇sWs. We can then sample the
interpolant in Equation 2, and train a neural network to predict the drift used for the generative SDE.

3 Experiments

We simulate non-linear dark matter fields using pmwd [6], a differentiable particle-mesh (PM) N-
body code. Although the method presented here does not rely on differentiating the forward model,
we validate our approach by recovering initial conditions with HMC. To assess the scaling of the
algorithm, we generate a large dataset of 50,000 simulations at two different resolutions:

• Low Resolution (LR): Box size L = 400Mpch−1 with 323 voxels, giving a voxel resolution
of 12.5Mpch−1. Cosmological parameters are either fixed (Ωm = 0.3, σ8 = 0.8) or
sampled from uniform priors when performing joint inference.

• High Resolution (HR): L = 100Mpch−1 with 643 voxels (1.56Mpch−1 voxel resolution).

All simulations start from 2LPT with five PM steps from z = 9 to z = 0, and Gaussian noise of scale
0.1, for fixed cosmology experiments, and 1, for joint inference (in units of the particle shot noise) is
added to the output fields.

3.1 Validating Initial Conditions sampling with Hamiltonian Monte Carlo

We first compare the SI and HMC posteriors over initial conditions at fixed cosmological parameters;
details of the setup can be found in App. B. In Fig. 2, we show the mean and variance of the cross
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correlation between true initial conditions and those sampled from the learned posterior, as a function
of simulations ran. We show results for small and large scales, together with the integrated area under
the curve over the entire scale range. In dashed lines, we show the results from explicit inference
with HMC. We find that the interpolant samples converge to the HMC posterior when a large number
of training simulations is used (O(104)). As expected, the convergence with number of simulations
is slower for small scales and higher resolutions.

3.2 Jointly sampling initial conditions and simulator parameters

In this section, we validate our joint modelling of initial conditions and simulation parameters, as
described in Equation 1, where the model for p(δICs|δObs) is the same interpolant model presented
in the previous section, this time trained by marginalizing over cosmology, and p(θ|δICs, δObs) is a
Masked Autoregressive Flow (MAF) [9]. Note that the weights of the two models are independent
from each other and therefore are trained separately but sampled jointly.

In Figure 3a, we show the agreement of the cosmological parameters inferred with our method (SI)
and those from HMC, for a random LR simulation in the test set. Moreover, we include a comparison
to a posterior with the initial conditions fixed to the true ones, pϕ(θ|δ∗ICs, δObs). The true value of the
cosmological parameters is shown with a dashed vertical line.
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3.3 Controllable simulators

We showcase the versatility of our amortized initial condition generator by applying it to produce
observations that fulfill certain partial constraints. For example, one could constrain a simulation
based on the number of halos with a specific mass and satellite distribution to produce a Milky-Way-
like galaxy. Here, we demonstrate this capability with a toy example, constraining the number of
pixels, Npixels, in the final density field that exceed a density threshold, δthreshold.

We approach this problem by first generating a plausible observation, δObs, that satisfies the constraint
by training an additional conditional model p(δObs|Npixels, δthreshold) through Flow Matching [12]
from a Gaussian distribution to the training set density fields. Note that one could directly target
the distribution of p(δICs|Npixels, δthreshold) directly, but this is a much harder problem to solve due
to the effect of non-linear evolution in the desired condition, whereas the condition can be directly
checked in δObs.

During training, we uniformly sample Npixels between 1 and 20 and estimate δthreshold for each
example. The amortized sampler introduced in Section 3.1 then generates initial conditions for the
constraint observations. In Figure 3b, we show the compliance of the resulting simulated fields with
our desired constraint, when we vary the value of δthreshold. We find that the simulated density fields
only approximately satisfy the input condition and that errors in reproducing the constraints primarily
arise from p(δObs|Npixels, δthreshold) only approximately enforcing the conditions, an issue noted
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in the literature [13]. Future work will focus on improving this conditioning in more scientifically
relevant scenarios.

4 Conclusions

We have demonstrated that Stochastic Interpolants efficiently estimate the joint distribution of initial
conditions and simulator parameters in cosmological simulations. Compared to HMC, our SI
approach is amortized, and does not rely on a differentiable forward model or explicit likelihood.
This makes the approach well-suited for current and upcoming galaxy surveys, where developing
accurate, differentiable, and fast forward models remains a challenge. Additionally, we showed how
the method enables controllable simulators through flexible constraints.

In future work, we plan to extend the method for application to galaxy surveys such as DESI,
by training the model on high-resolution, forward-modeled galaxy fields that account for survey
masks and systematic effects. Additionally, we aim to enhance the capabilities of our controllable
simulators by incorporating more realistic constraints, paving the way for more flexible and accurate
simulations. Ultimately, we believe this approach has the potential to significantly improve our ability
to reconstruct initial conditions and explore the complex parameter spaces of large-scale cosmological
simulations.
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A Model’s architectures and training details

A.1 Stochastic Interpolant

The drift term in the Stochastic Interpolant is modelled with a U-Net [14] like architecture with
ResNet blocks [15], with 32, 64, 64 channels per convolution for the HR set, and 64, 128, 128 for the
LR dataset.

All models are trained with a batch size of 16, a starting learning rate of 3× 10−4 and a learning rate
scheduler reducing the learning rate by a factor of 10 when the validation loss plateaus, for 50000
gradient steps. We pick the checkpoint with lowest validation loss.

A.2 Normalizing flow

The normalizing flow consists of a summarizer, a ResNet [15] architecture of the same number
of channels as the Stochastic Interpolant described above and a summary dimension of 128, and
Masked Autoregressive Flow, consisting of five transforms with three MLP layers each, and a hidden
dimensionality of 128.
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B Inference with Hamiltonian Monte Carlo

To perform inference with HMC we explicitly sample the posterior,

−2 logP (z, θ|δObs) =
∑
k⃗

[
|fk⃗(z, θ)− δObs,⃗k|2

N
+ |zk⃗|2

]
, (5)

where z are the standard normal Fourier modes of the initial overdensity field δIC, θ are the forward
model parameters, and N is the variance of the injected noise. The first term is the likelihood and is
evaluated using the same forward model f as was used to generate the data. The second term is the
prior, resembling the standard normal nature of the initial Fourier modes. The sum is performed over
all voxels in k-space.

A conservative 1000 warm-up steps were taken during which the step size and mass matrix for the
cosmological parameters were tuned. The mass matrix for the initial conditions was set analytically
as in [16]. Annealing was applied during NUTS warm-up to first converge on large scales and then on
progressively smaller scales, as in [17]. After warm-up, NUTS was run for 10,000 iterations, with a
maximum tree depth of 5 for initial condition reconstruction at fixed cosmology, and 10 when jointly
inferring cosmological parameters, as this was required to achieve convergence. This was repeated 5
times from different starting points to produce 5 chains of samples. It would be interesting further
work to benchmark against microcanonical samplers [16].
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