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Abstract

Deep learning equation-driven approaches, also known as physics-informed neural
networks (PINNs), have seen a wave of success in modeling physical systems
governed by differential equations. However, these techniques have rarely been
applied to quantum systems, where traditional numerical methods provide accurate
solutions but become computationally expensive for large-scale systems. We
explore a neural network approach capable of solving the Schrödinger equation
for two-dimensional systems of periodic potentials. Applying efficient sampling
and normalization constraints allows the simultaneous discovery of the energy
band structure and the associated wavefunctions, that are crucial, for example, to
determine the properties of electronic, photonic, and metamaterials systems.

1 Introduction

Since their introduction [1], physics-informed neural networks (PINNs) have been investigated
as a viable alternative to traditional numerical techniques to solve partial differential equations
(PDEs) [2, 3] for various applications in mathematics [4, 5] and the physical sciences [6–9]. PINNs
techniques leverage the universal approximation property of neural networks [10] to approximate
solutions to PDEs. PINNs have been investigated as a solution to dimensionality scaling issues present
with traditional numerical solvers [11, 12], and possess desirable interpolation and differentiability
properties which allow for efficient error computation and optimization with gradient-based methods
[13].

Main contributions: We adapt the PINN approach to solve the time-independent Schrödinger equa-
tion for a particle in a periodic potential, which is an eigenvalue problem relevant for many physical
systems such as electrons in bulk and nanoscale crystalline structures. We define a neural network
architecture that simultaneously learns the complex-valued wavefunctions and their associated real
eigenvalues as a function of both the dual real space position and its reciprocal crystal momentum. By
selectively sampling disjoint regions in momentum space a single network is able to learn multiple
wavefunctions and eigenvalues corresponding to each irreducible k value. We demonstrate our
approach with two example potentials.
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2 Background

The time-independent SE for the wavefunction describing a single particle moving in an external
potential V(r) is written: [

− ℏ2

2m
∇2 + V(r)

]
ψ(r) = Eψ(r). (1)

Below we choose units where ℏ = m = 1. Our goal is to extend previous PINN methods [14, 15] to
periodic systems. Specifically, we want to solve Eq. (1) for a potential which satisfies the following
periodicity condition:

V(r) = V(r+R), ∀R =
∑
i

niai, with ni ∈ N, (2)

where {ai} are the set of basis vectors that define the periodicity of the potential in real space. Bloch’s
theorem [16] states that for such a potential, ψ can always be written:

ψk(r) = eik·ruk(r), (3)

as the product of a plane wave and a Bloch function, uk(r), which has the same periodicity as
the potential V(r). The crystal momentum k is a parameter in the reciprocal space to the periodic
real-space lattice. The “unit cell” of the reciprocal space is known as the Brillouin zone. Substituting
Eq. (3) into Eq. (1) we obtain a modified SE that depends parametrically on k:[

−1

2
∇2

r + ik · ∇r −
1

2
k2 − V(r)

]
uk(r) = Ekuk(r). (4)

This is an eigenvalue equation for uk(r) with eigenvalue Ek. To solve this PDE using a neural
network approach we define the following feed-forward networks:

uk(r) = Nu : (r, k) → C (5)
Ek = NE : (k) → R. (6)

Note that Eq. (4) is only satisfied when Nu and NE are exact solutions, so we can treat it as a loss
term and utilize gradient descent to find the weights that minimize the following expression:

Leq =
〈([

−1

2
∇2

r + ik · ∇r −
1

2
k2 − V(r)−NE(k)

]
Nu(r, k)

)2 〉
, (7)

where ⟨· · · ⟩ denotes averaging with respect to the inputs r and k, and gradients are taken using
automatic-differentiation provided by PYTORCH. We introduce additional loss terms to enforce
relevant constraints, as described in the next section. We additionally incorporate weighted sampling
of the reciprocal space to sample points more efficiently along “high symmetry" boundaries, which is
further discussed in the appendix B. Finally, we show that an equation-driven approach may solve for
multiple electronic states simultaneously, producing accurate results even at higher energy levels.

3 Methods

We refer to the two feed-forward networks, Nu and NE , as the eigenfunction unit and energy unit.
The role of each unit is to learn part of the solution to the SE for a given potential. In practice, we
define the eigenfunction unit to have two real-valued outputs, representing the real and imaginary
components of the complex-valued uk(r).

3.1 Loss Formulation

In addition to the loss term of Eq. (7) based on the differential equation, we also define boundary con-
ditions (BC) and normalization (Norm) constraints which are important for a physically meaningful
solution.

Lbc = |Nu(r+ a, k)−Nu(r, k)|2 + |∇rNu(r+ a, k)−∇rNu(r, k)|2 , (8)
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where a is any lattice vector. The assumption that Bloch states’ first derivatives must match along cell
boundaries stems from our assumption that the potential V(r) is finite. To avoid the trivial solution,
uk(r = 0) impose a normalization constraint on the Bloch states across a unit cell:

Lnorm =
〈(

1−
∫
Cell

N ∗
u (r, k)Nu(r, k)

)2 〉
. (9)

This has the added benefit that the solution can be immediately interpreted as a probability density.
Both loss terms are evaluated with fixed k, and in practice it is necessary to compute these regular-
ization terms for many values of k to effectively impose these constraints across all Bloch states
throughout training.

4 Experiments

We evaluate our method on two different 2-dimensional potentials defined on a square unit cell in
real space. The momentum parameter k is thus also defined on a 2-dimensional reciprocal space.
The eigenfunction unit is initialized as a neural network with 4 layers of 384 neurons, and the energy
unit is initialized as a 4-layer 128-neuron network; all the hidden neurons use the SiLU activation
function. The first experiment explores a constant potential V(r) = c. Our second experiment
evaluates our model on a pseudopotential approximating an atomic well (see C for details regarding
the construction of the atomic potential). We report the training loss for both experiments in Table 1
and compare them to the ground truth defined by a well-converged numerical solution based on a
Fourier series expansion of the potential and eigenfunctions. All training was performed on a NVIDIA
A100 hardware utilizing the AdamW optimizer. Further implementation details and examples are
available at https://github.com/circee/blochnet.

Table 1: Model performance for 2D periodic potentials
Potential Total Loss (MSE) Equation Loss Norm Loss BC Loss

Constant Potential 2.9e - 4 2.6e - 4 2e - 5 5e - 6
Atomic Potential 2.7e - 3 1.2e - 3 2.4e - 4 1.2e - 3

Figure 1: Energy eigenvalues Ek as a function of reciprocal space momentum (electronic band
structure) for a constant potential (left) and atomic potential (right). The energy bands for the lowest
state and next eight electronic states are plotted for values of k along a conventional high symmetry
path in the reciprocal space. Γ refers to k = 0, while M is at a corner of the square reciprocal space
unit cell (Brillouin zone, see Fig. 4) and X is the midpoint of one of the edges. Solid colored lines
represent network energy values NE ; dashed grey lines indicate the numerical ground truth; and
black dotted lines show the expectation value of the energy eigenvalue computed from Nu, defined in
Appendix A.
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Figure 2: Mean absolute error for each energy eigenvalue (band) averaged over k, for the constant
(left) and atomic (right) potentials. Solid lines show the MAE for NE while dashed lines represent
the MAE of the energy expectation value.

4.1 Band-structure

Constant potential: Training loss results from Table 1 indicate that our model achieved good
accuracy on the constant potential tasks, confirmed by the band-structure diagram results in Fig. 1
and computed mean-absolute error per-band in Fig. 2.

Atomic Potential: We chose Vatom(r) to approximate the Coulomb potential, VCoulomb(r) =
1
r , but

without the singularity at r = 0. Compared to the constant potential, the atomic potential loss is
roughly one order of magnitude larger. Notably, the boundary condition loss term is significantly
larger for the atomic potential, attributable to the nontrivial Bloch states that the network must solve
for. The mean absolute error (MAE) for the network energy, NE , is significantly lower than the
energy expectation value across almost all bands.

4.2 Visualizing Bloch States

To visualize the Bloch states we show contour plots of Nu for the atomic potential with k = Γ, X ,
and M , showing the for the five lowest energy eigenstates as a function of r = (x, y). Figure 3
demonstrates how our network solves for Bloch states across multiple values of k simultaneously,
while imposing appropriate boundary and normalization constraints from equations 8 and 9.

Figure 3: The probability density, |Nu(r)|2, at specific high symmetry points k = Γ, X , and M ,
corresponding to the first five energy eigenstates, with increasing energy from left to right. Nu are
clearly periodic in both horizontal and vertical directions.
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5 Conclusion

We demonstrate how a neural network approach can be used to efficiently learn solutions to the
Schrödinger equation with a periodic potential such as those that are ubiquitous in solid state physics.
We show that theoretical assumptions may be included as soft constraints imposed through loss
terms to enforce physically valid wavefunction and energy solutions to the SE, as demonstrated
in Figs. 1 and 3. Beyond previous works that solve periodic systems in real space [17], our self-
consistent neural network solutions provide continuous and differentiable representations of multiple
bands (eigenstates) as a function of both position, r, and crystal momentum, k, and agree well with
numerically computed ground truth values.

Our future work plans to address the limitations of our model expressivity by exploring alternatives
to the feed-forward architectures, such as those developed in [18, 19]. Increasing expressive ability is
necessary for our model to scale to higher dimensions, and will enable more accurate and generalizable
neural network solutions to PDEs.
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Appendix A Computing the expectation energy

The expectation energy can be computed from a given wavefunction ψ according to the following:

E =

∫
Cell

ψ∗Ĥψ dr, (10)

where ψ∗ is the complex conjugate of ψ and Ĥ is the Hamiltonian operator. From 4 the Hamiltonian
is given by:

Ĥ =

[
−1

2
∇2

r + ik · ∇r −
1

2
k2 − V(r)

]
. (11)

For a value of k, the expectation energy from a network-produced Bloch state can thus be computed
by:

E =

∫
Cell

N ∗
u (r, k)

[
−1

2
∇2

r + ik · ∇r −
1

2
k2 − V(r)

]
Nu(r, k) dr. (12)

In practice, numeric integration is used to compute the above quantity with a dense mesh grid.

Appendix B Reciprocal space sampling

Because the constant and atomic potentials are fully radially symmetric within a square unit cell,
we may leverage the underlying D4 symmetry to reduce required sampling in reciprocal space to a
fraction of the entire space, as shown below:

Figure 4: Reciprocal space sampling strategy. Each triangle represents an irreducible Brillouin zone
(refer to [16]). The blue dots represent k-points sampled within the triangle boundary while the
orange points are enforced to be directly sampled along the high-symmetry boundary path.

The central triangular cell is shifted by a linear combination of lattice basis vectors to find higher-
energy states. This model of the reciprocal space is referred to as the extended zone scheme.
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Appendix C Construction of the pseudopotential well

Figure 5: Radial cut view (left) and contour map (right) of the atomic pseudopotential. A depth of
−30 was used during training.

We construct the atomic pseudopotential in two dimensions to mimic the behavior of the Coulomb
potential, VCoulomb(r) =

1
r , while avoiding the singular point at r = 0. Mathematically, the atomic

pseudopotential is given as follows:

Vatom(r) =
V0

1 + ∥r∥2
. (13)
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