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Abstract

Quantum computing presents a promising alternative for the direct simulation of
quantum systems with the potential to explore chemical problems beyond the capa-
bilities of classical methods. However, current quantum algorithms are constrained
by hardware limitations and the increased number of measurements required to
achieve chemical accuracy. To address the measurement challenge, techniques for
grouping commuting and anti-commuting terms, driven by heuristics, have been
developed to reduce the number of measurements needed in quantum algorithms on
near-term quantum devices. In this work, we propose a probabilistic framework us-
ing GFlowNets to group fully (FC) or qubit-wise commuting (QWC) terms within
a given Hamiltonian. The significance of this approach is demonstrated by the
reduced number of measurements for the found groupings; 51% and 67% reduction
factors respectively for FC and QWC partitionings with respect to greedy coloring
algorithms, highlighting the potential of GFlowNets for future applications in the
measurement problem. Furthermore, the flexibility of our algorithm extends its
applicability to other resource optimization problems in Hamiltonian simulation,
such as circuit design.

1 Introduction

Quantum computing has gained considerable attention for its potential to solve the electronic structure
problem (ESP), a fundamental challenge in computational chemistry and material science [1–5].
However, a major obstacle for quantum algorithms addressing the ESP, particularly on current noisy
intermediate-scale quantum (NISQ) devices, is the measurement problem—the large number of mea-
surements required to achieve chemical accuracy [6]. To mitigate this, two main approaches have been
developed: (i) grouping commuting/anti-commuting terms and applying factorization/modification
techniques to the Hamiltonian [7–15], and (ii) partial-tomography protocols inspired by shadow
tomography [16–18]. A third approach integrates both frameworks [19]. While these methods have
made substantial progress in tackling the measurement problem, their reliance on heuristics for
optimization or the grouping per-se does not guarantee that the selected grouping minimizes the
number of measurements.

In this work, we introduce the use of generative models for the measurement problem. Specifically,
we utilize Generative Flow Networks (GFlowNets) to sample different valid groupings for a given
Hamiltonian. GFlowNets are designed to sample from complex probability distributions by construct-
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Figure 1: General scheme of GFlowNets for grouping Hamiltonian terms of H2. Each node is a Pauli
word from the Hamiltonian. The relative width of the arrows shows the probability of sampling a
given state. The number of shots estimated to achieve chemical accuracy for each terminal state is
shown in the last column.

ing flow-based policies to generate structured objects, such as graphs or sequences, through a series
of intermediate steps [20, 21]. Unlike previous deterministic approaches, GFlowNets could learn a
policy to sample the grouping configurations for a given Hamiltonian; see Fig. 1. We build on the
relationship between the graph representation of optimal groupings through the minimum-clique
cover (MCC) and the coloring of its complementary graph [11]. MCC is a known NP-hard problem
with highly complex solution space which makes GFlowNets an attractive approach. GFlowNets-
based approaches have also been introduced for graph combinatorial problems [22], like molecule
generation with target properties [20]. Due to their stochastic nature, GFlowNets offer a diverse
set of high-quality solutions leading to a broad exploration, making them a promising approach for
grouping strategies in tackling the measurement problem.

2 Methods

Here, we briefly introduce the GFlowNets algorithm, Section 2.1, and grouping term decomposi-
tion used for Hamiltonians, Section 2.2. Finally, we give a description of our algorithm for the
measurement problem.

2.1 GFlowNets

The key feature of GFlowNets is the incremental generation of each object x through a sequence of
actions, which allows efficient sampling in complex, high-dimensional spaces [20–25]. For a discrete
set X , the probability P (x) to sequentially build X is given by

P (x) =
R(x)

Z
=

R(x)∑
x′∈X R (x′)

. (1)

where R(x) is the reward function associated with state x, and Z is the normalization constant. This
formulation approximates the probability distribution P (x) over the discrete set X , proportional to
the rewards of each state. Let S denote the set of states and X ⊂ S denote the set of terminal states.

To sample from this probability distribution (Eq. 1), we define a trajectory s = (s0, s1, . . . , sn),
where s0 the initial state of any trajectory, progresses through intermediate states (s1 · · · sn−1) and
ends with a valid terminal state (sn ∈ X ). We define T as the set of all possible trajectories, and Tx
as the subset of trajectories that terminate at a specific terminal state x ∈ X . We then introduce a
flow function F : T → R+, associated with a normalized probability distribution over trajectories,
P (s) = F (s)/Z, Z =

∑
s∈T F (s). A flow function is considered valid if, for each terminal state

x, the total flow into x matches its reward, R(x) =
∑

s∈Tx
F (s) [20, 21]. This implies that the

probability P (x), is proportional to its reward P (x) =
∑

s∈Tx
F (s)/Z ∝ R(x).

If the trajectory is Markovian, P (s) can be decomposed as P (s) =
∏n

i=1 PF (si | si−1), where
PF (si | si−1) is the forward policy corresponding to F . At each state, PF can be computed
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by PF (s′ | s) = F (s→ s′)/F (s), where F (s) =
∑

s′ F (s→ s′). The flow matching con-
straint needs to be satisfied for all intermediate states [20, 21, 25],

∑
(s′′→s)∈A F (s′′ → s) =∑

(s→s′)∈A F (s→ s′), where A denotes all possible transitions (s→ s′). Finally, we approximate
the flow F (s→ s′) with a model Fθ (s

′, s) with learnable parameter θ, which can be trained to
minimize the loss L (Eq. 2) to satisfy the flow matching constraint.

L(s) =
∑

s∈s,s̸=s0

(
log

∑
(s′′→s)∈A Fθ (s

′′, s)∑
(s→s′)∈A Fθ (s, s′)

)2

(2)

For the terminal state sn, it is important to note that the denominator becomes the reward R(sn).

2.2 Hamiltonian terms grouping, measurements and GFlowNets implementation

Variational Quantum Eigensolver (VQE) techniques for the ESP are one of the most common
applications of quantum algorithms in NISQ devices. These approaches rely on measuring the
expectation value of the Hamiltonian. The molecular Hamiltonian is defined by the identity of the
atoms, interatomic distances, and the basis set chosen for the calculation. For its measurement, a
fermion-to-qubit mapping is required, e.g., Jordan-Wigner (JW) and Bravyi-Kitaev [26, 27]. We will
focus on the JW mapping which takes the occupation number of orbitals and maps them directly
to whether the qubit state is in |0⟩ or |1⟩ while maintaining the anticommutation relationships from
fermionic operators by introducing a phase with Ẑ qubit operators, leading to a qubit Hamiltonian in
terms of Pauli products,

Ĥq =

NP∑
k

ckP̂k, P̂n =

Nq⊗
n=1

σn, (3)

with every Pauli product P̂n being a tensor product of Pauli operators and identities for the corre-
sponding qubit σn ∈ {x̂n, ŷn, ẑn, 1̂n}. NP is the number of Pauli words in Ĥq. Specific details on
this mapping can be found in [27, 28].

To find molecular energies, VQE performs an iterative optimization of a parameterized wavefunction,
|ψθ⟩, as Eθ = minθ⟨ψθ|Ĥq|ψθ⟩. Since Ĥq contains terms that do not commute with each other, a
single shot measuring of the operator is not possible. For this reason, we are required to partition the
Hamiltonian into compatible fragments [11] and measure each of them separately

Ĥq =

Nf∑
α=1

Ĥα; Eθ =

Nf∑
α=1

⟨ψθ|Ĥα|ψθ⟩. (4)

Several grouping schemes exist, this work focuses on the fully commuting (FC) and qubit-wise
commuting (QWC) groupings for the VQE problem. For FC, the requirement is that the Pauli
products within a group commute with each other, [P̂i, P̂j ] = 0. QWC is a more strict condition since,
for a pair of Pauli products, every single-qubit operator needs to commute [P̂i, P̂j ]QWC = 0, e.g. the
Pauli products X̂1X̂2 and Ŷ1Ŷ2 commute but not qubit-wise commute. Both of these partitionings
can be achieved by constructing the corresponding commutativity graph and identifying the MCC.
Each clique in the graph represents a distinct group. This is equivalent to coloring the complementary
graph as is well-known in graph theory and as is often employed in quantum computing. Even though
efficient algorithms are known for the coloring problem [29], these do not guarantee that the resulting
partitioning would be the best performing when implemented in quantum devices, an issue that we
aim to tackle with GFlowNets.

To sample optimal groupings using GFlowNets, we need to estimate the number of measure-
ments (Mest) required to achieve a certain accuracy (ε). This quantity can be found as, M =

1
ε2

(∑Nf

α

√
Var(Ĥα)

)2

, [30, 10] where Var(Ĥα) is the variance of the operator which requires an

approximation of the wavefunction or, ideally, the full-CI wavefunction to get the variances of each
fragment. We approximate the variances under the assumptions, Cov(P̂j , P̂k) = 0 and Var(P̂j) ≤ 1,
yielding the expression [31]

Mest ≈
1

ε2

∑
i

√∑
j

c2ij

 . (5)
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While it would be ideal to employ the exact wavefunction instead, this approximation is used in the
reward function on the GFlowNets training stage due to its easiness of calculation.

The reward employed is based on 1) the number of groupings (colors) on the graph and 2) the number
of measurements required to achieve chemical accuracy of 1 kcal/mol or 1.6 mHa. Explicitly, we
defined the reward function as,

R(x) = (NP − max_color(x)) +
λ0

Mest(x)
(6)

where max_color is the maximum color for the generated graph which gives the number of groups,
the lower this number is, the fewer circuits we need to run. λ0 is a scaling factor, set to 106 to account
for the order of magnitude of the number of measurements.

Now we proceed to describe our sampling algorithm which is schematized in Fig. 1. First, a set of
Pauli products from the molecular qubit Hamiltonian is fed to GFlowNets with the commutativity
graph. The terms are assigned to a vertex, and edges are given by the commutation/QW-commutation
relations to generate the complementary graph. At every training iteration, colors are assigned
sequentially using a categorical distribution with probabilities dictated by Eq. 1; a masking function
is employed to limit the optimization space. The mask takes as the upper limit the number of groups
from a classical heuristics-based algorithm, namely greedy coloring with a random sequential strategy,
and it can be increased as the user requires. Each added color to the resulting graph represents a
different state, x, through the action sequence for GFlowNets whose transitions come from adding a
new colored term to the list. Once a terminal state is reached, the validity of the graph coloring is
assessed, R(x) is calculated, and the color probabilities per vertex given by GFlowNets are updated.
Finally, the total number of colors in a terminal state is the number of groups to be measured and a
new iteration begins.

3 Results

In this section, we present the results of applying GFlowNets to six molecular systems: H2, H4, LiH,
BH, BeH2, and N2. For all systems, we used an inter-atomic distance of 1 Å, the STO-3G basis
set [32], and the Jordan-Wigner mapping. Except for N2, where only 100 training iterations were
used, 1,000 iterations were found sufficient for the other systems. The number of Pauli terms (NP )
are reported in Table 1. For Fθ(s

′, s), we employed a two-layer MLP with 512 neurons and the
tanh activation function. For all simulations, we used an NVIDIA GeForce RTX 4080 SUPER GPU,
Torch, the Adam optimizer [33] with a learning rate of 3× 10−4 and gradient accumulation every ten
steps.

Table 1: Comparison of Mest (in millions) required to achieve chemical accuracy for the different
available methods. Number of colors reported in parentheses. Full is the Mest without grouping.
We define the Reduction factor as the ratio between GFlowNets and the best-performing greedy
NetworkX-method.

GFlowNets (ours) NX-lf NX-dsat Full Reduction factor
System [NP ] FC QWC FC QWC FC QWC None FC QWC

H2 [14] 0.485 (2) 0.746 (5) 0.757 (2) 0.746 (5) 0.757 (2) 0.746 (5) 2.56 0.640 1.000
H4 [184] 1.50 (19) 1.13 (71) 2.87 (11) 1.29 (68) 3.79 (9) 1.27 (67) 76.7 0.524 0.877
LiH [275] 2.10 (23) 4.10 (72) 4.13 (21) 6.77 (64) 8.32 (12) 6.54 (63) 121 0.508 0.626
BH [275] 3.23 (22) 4.92 (72) 5.99 (21) 8.21 (64) 10.5 (12) 7.78 (63) 610 0.539 0.632

BeH2 [326] 5.71 (23) 9.78 (101) 14.0 (16) 21.0 (100) 22.4 (9) 21.1 (99) 405 0.407 0.465
N∗

2 [824] 22.8 (49) 48.0 (340) 51.2 (23) 111 (318) 125 (16) 110 (314) 12705 0.446 0.433

Table 1 compares the estimated required number of measurements for the groupings obtained
by GFlowNets and the ones from greedy coloring in NetworkX following the Largest first (NX-
lf), and saturation largest first (NX-dsat) strategies. We found that to achieve chemical accuracy,
GFlowNets on average require 51% for FC and 67% for QWC, of measurements compared to
heuristic methods. These promising results encourage further developments for incorporation of
state-of-the-art techniques, such as k-commutativity groupings [34] and ghost Pauli products [35] to
the GFlowNets workflow to further improve it.

In Fig. 2a, we show the 2D histogram of the maximum color found and the estimated number of
measurements Mest for LiH and BeH2 in the FC grouping. Let’s reiterate that the maximum color
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is the number of compatible groups. It is appreciable how the sampling algorithm veers towards
configurations with a balance between the number of groups and Mest. This effect is of course
dependent on λ0 and optimization of this parameter is one of the perspectives of the present work.
Decreasing this parameter, samples colorings with a lower number of groups while the opposite
biases the algorithm towards lower Mest regardless of the group number. For future work, we plan
to extend our algorithm to incorporate classically efficient wavefunctions, such as Coupled-Cluster,
to improve variance estimation [10] thereby providing a more accurate reflection of our algorithm’s
practical performance.

Some of the sampled graphs generated by GFlowNets for H2 and BeH2 Hamiltonians are shown in
Fig. 2b- 2c. As we observe, H2 graphs I and II are equivalent colorings, yielding the same number
of measurements. The set of equivalent graphs is responsible for the increased number of sampled
graphs shown in the histograms for a particular Mest. On the other hand, the BeH2 graphs show how
inefficient groupings can increase dramatically the required number of measurements, producing a
sixfold increase in Mest.

Figure 2: a) 2D histogram of number of groupings and estimated measurements (Mest) for LiH and
BeH2 with FC grouping. b) Equivalent graphs sampled for H2 in FC grouping. c) Sampled graphs
for BeH2 in QWC grouping. Mest shown for each graph.

It is important to note that incorporating the number of measurements into the reward function,
allows the algorithm to sample partitionings that may not minimize the number of cliques but result
in lower measurement estimates. This flexibility in the choice of GFlowNets’ reward function
opens research opportunities for its implementation towards other resource optimization problems
in quantum computing. Our results provide early evidence that GFlowNets, coupled with more
competitive techniques, could become a promising alternative for grouping compatible operators.

4 Summary

In this work, we introduced GFlowNets for grouping compatible Hamiltonian terms in VQEs. Our
results demonstrate that GFlowNets can achieve more efficient groupings compared to the deter-
ministic methods available in NetworkX, as used in Pennylane [36]. This research serves as a
promising foundation for leveraging GFlowNets to address the measurement problem. Given the
flexibility of GFlowNets’ reward function, potential extensions to our framework include exploring
k-commutativity conditions [34], incorporating “ghost” Pauli products [35] or utilizing the Majo-
rana tensor representation [37] for more general decompositions that further reduce measurement
requirements. These are all directions we plan to investigate in the near future.
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