
Symbolic regression for precision LHC physics

Manuel Morales-Alvarado
INFN, Sezione di Trieste

SISSA
Trieste, Italy

mmorales@sissa.it

Daniel Conde
IFIC

Universidad de Valencia
Valencia, Spain

daniel.conde@ific.uv.es

Josh Bendavid
Massachusetts Institute

of Technology
Cambridge, Massachusetts, USA

josh.bendavid@cern.ch

Veronica Sanz
IFIC

Universidad de Valencia
Valencia, Spain

veronica.sanz@uv.es

Maria Ubiali
DAMTP

University of Cambridge
Cambridge, UK

m.ubiali@damtp.cam.ac.uk

Abstract

We study the potential of symbolic regression (SR) to derive compact and precise
analytic expressions that can improve the accuracy and simplicity of phenomeno-
logical analyses at the Large Hadron Collider (LHC). As a benchmark, we apply SR
to equation recovery in quantum electrodynamics (QED), where established analyt-
ical results from quantum field theory provide a reliable framework for evaluation.
This benchmark serves to validate the performance and reliability of SR before
extending its application to structure functions in the Drell-Yan process mediated
by virtual photons, which lack analytic representations from first principles. By
combining the simplicity of analytic expressions with the predictive power of ma-
chine learning techniques, SR offers a useful tool for facilitating phenomenological
analyses in high energy physics.

1 Introduction

SR is a machine learning task that discovers symbolic models by searching for simple analytic
expressions that minimise both prediction error and model complexity. Unlike traditional methods,
SR does not fit parameters to a potentially overparametrised model but instead finds concise formulas
to describe data. This approach combines the power of machine learning with the clarity of analytical
expressions, enabling the extraction of simple formulas from potentially complex datasets.

In LHC physics, some quantities have analytic expressions, while others require expensive fits or
iterative algorithms for evaluation, lacking universally known formulas. Previous studies have applied
SR in LHC contexts [1, 2], often comparing the derived models to known analytical results. However,
a key motivation for this work arises in scenarios where no reference expression exists, prompting
the need to assess the reliability of SR methods.

The structure of this work is as follows. Sect. 2 briefly introduces the basics of SR. Sect. 3 validates
the methodology by recovering known analytical expressions from noisy data. Sect. 4 presents an
SR-derived result for the Drell-Yan structure function with virtual photons, which cannot be obtained
from first principles. We conclude in Sect. 5.
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2 Symbolic regression

SR is a supervised learning method that discovers closed-form analytical expressions for input-output
relationships without completely predefined functional forms [1–5]. Unlike linear regression or
neural networks, SR optimises simultaneously for both accuracy and simplicity.

We use the PySR package [6], a multipopulation evolutionary algorithm that evaluates symbolic
expressions as expression trees. It can be highly effective for parameter spaces of moderate size [7, 8].
Fig. 1 shows an example tree representing the equation 3.1y · (x2 + 1). In this study, equations are
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Figure 1: Example of an ex-
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Figure 2: Mutation of an ex-
pression tree.

evaluated using the MSE loss function. During optimisation, expression trees mutate over iterations
to improve based on a selection criterion, as shown in Fig. 2, where a ’+’ in Fig. 1 mutates to a ’−’.

Trees can also combine through crossover, and complexity, defined by node count, is managed via
multiobjective optimisation. More details are available in the original reference.

The selection criterion in PySR guides the evolutionary algorithm in choosing the fittest expression
trees. There are three criteria: accuracy, which selects the model with the lowest loss; score,
defined as the negative derivative of log-loss with respect to complexity, selects the model with
highest decrease in loss with marginally higher complexity; and best, which selects the model with
the highest score, provided its loss does not exceed 1.5 times that of the most accurate model.

3 Equation rediscovery from QED

In this section, we apply SR to the process e+e− → γ∗ → µ+µ− at leading order, testing its ability
to recover the angular cross-section distribution in the massless limit. From QED, the distribution is:

dσ

d cos θ
=

πα2

2s
(1 + cos2 θ), (1)

where θ is the angle between the outgoing muon and incoming electrons, α the QED coupling, and
s the squared centre-of-mass energy, treated as a constant. Radiative corrections and higher-order
effects are not included, so α is also treated as constant. SR will aim to rediscover this equation from
simulated samples.

To train the regressor, we generate 100k events at
√
s = 1 TeV using MADGRAPH5_AMC@NLO [9,

10] without kinematic cuts. From these events, we extract cos θ distributions for various binnings and
show the corresponding samples to the regressor. As Eq. ( 1) indicates, cos θ is the key kinematic
variable.

In Tab. 1, we present the analytical equations derived from the simulated distributions for different
binnings. Comparing with Eq. (1), we observe that the accuracy criterion often fails to recover the
equation across different binning levels, fitting the noise. In contrast, best, successfully recovers the
correct equation with finer binning. Notably, score consistently identifies the correct equation, even
with very fine binning, demonstrating that simplicity can be an effective factor.

Realistic simulations must account for uncertainties and fluctuations in the data. Figs. 3 and 4 show
the absolute and normalised distributions for 30 bins, comparing the simulation’s central value (with
1-standard deviation Poisson uncertainty at the level of the event count in each bin), the SR result,
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Table 1: Equations according to the three selection criteria for different bin sizes with cθ ≡ cos θ.
The numbers that appear in these expressions have been approximated to the 5th decimal place.

Bins Accuracy Best Score

10 cθ(cθ + 0.00798)(0.00111 ·
c3θ + 0.03459) + 0.03503

c2θ(0.00111 · cθ + 0.03459) +
0.03503

0.03459 · c2θ + 0.03503

20
cθ(cθ + 0.01825)(−0.00155 ·

cθ(cθ − 0.05138) +
0.03579) + 0.03485

cθ(0.03447 · cθ + 0.00064) +
0.03498

0.03447 · c2θ + 0.03498

200
c2θ(−0.64647 · cθ(0.00119 ·
cθ − 0.00151) + 0.03495) +

0.03495
0.03447 · c2θ + 0.03495 0.03447 · c2θ + 0.03495

and the analytic equation. SR demonstrates excellent agreement with the true functional form, even
in cases where the simulation deviates by more than one standard deviation from it. This shows SR’s
ability to recover not only accurate distributions but also the correct functional dependence derived
from first principles in QED.
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Figure 3: Absolute distribution for 30 bins.
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Figure 4: Normalised distribution for 30 bins.

Having verified a known natural law across various settings, we can now explore how SR can shed
light on expressions that do not have a known closed analytical formula. This is, for example, the
case of parton distribution functions and structure functions.

4 Proton structure functions

Parton distribution functions (PDFs) are essential for calculating observables at hadron colliders, as
discussed in [11, 12] and references therein. They represent momentum distribution of partons within
hadrons, which must be combined with partonic cross sections to produce physical predictions to
compare with experimental data. PDFs cannot be calculated from first principles, as they encapsulate
the non-perturbative regime of quantum chromodynamics where the strong coupling becomes too
large for perturbative methods to converge. Instead, PDFs have to be fitted from experimental data.
This is achieved at the state of the art by using fixed functional forms or neural networks with
hundreds of trainable weights [13–15].

Many differential observables depend on structure functions (SFs), which are weighted combinations
of PDFs [16, 17]. Like PDFs themselves, SFs lack closed analytical expressions. In this section, we
introduce the first SR approach to derive SFs. Our goal is to obtain accurate and compact analytical
expressions that can effectively model these functions, offering a more straightforward and clear
understanding of their behaviour compared to current techniques.

We consider the leading order Drell-Yan (DY) process p p → γ∗ → µ+ µ− at
√
s = 1 TeV and

generate 100k events. No standard cuts are applied on the event generation. We use the CT10 NLO
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PDF set [18, 19]. The DY double differential cross section is given by

d2σ

dMdy
=

1

3s

8πα2

3M

(∑
q

Q2
q(fq(x1, τ)fq(x2, τ) + fq(x1, τ)fq(x2, τ)

)
≡ 1

3s

8πα2

3M
F (M,y),

(2)
where M and y are, respectively, the invariant mass and the rapidity of the muon pair, x1 =

√
τey

and x2 =
√
τe−y are the parton momentum fractions that cannot be bigger than 1, and τ = M2/s.

The sum in parentheses runs over the q = u, d, s, c quark flavours, Qq is their respective electric
charge, and fq are their associated PDFs. We are exclusively interested in the SF F (M,y) at high
resolution in the kinematic coverage as the rest of the distribution is known.

The SF values from the simulation are shown in Fig. 5, calculated by reweighting the double
differential distribution with the prefactor 1

3s
8πα2

3M as per Eq. (2). Applying SR to this distribution
yields a hall-of-fame set of models at various complexities, with selected examples shown in Table 2.
The best model, with a complexity of 33 (highlighted in gray), is shown in Fig. 6. These results are
compared to the central replica values of the PDF set, shown in Fig. 7. From the figures, we observe

3 4 5
M [GeV]

−6

−4

−2

0

2

4

6

y

Simulation

0

20000

40000

60000

80000

Figure 5: SF values obtained from the reweighted
simulation.
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Figure 6: SF values obtained from the central
value PDF grids.

3 4 5
M [GeV]

−6

−4

−2

0

2

4

6

y

Symbolic regression

20000

40000

60000

80000

Figure 7: SF F (M,y) values obtained with SR.

that the SR result provides a smooth function that approximates well the PDF grid. It successfully
extrapolates to the unphysical regions of the kinematic coverage by suppressing the function (although
it does not fully reach zero) and effectively reduces fluctuations at high invariant mass M . Moreover,
the expressions in the table show that the SF can be parametrised at low complexity (3) using inverse
power laws in M . At higher complexities, where there is resolution in y, the SR recognises that it
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must be symmetric in y, as dictated by particle kinematics. Notably, the most complex expression
(complexity 35), while more accurate by construction, achieves a lower score due to increased
expression length.

Table 2: Selection of best SR expressions F (M,y) with their complexities and scores. Constants
are approximated for display purposes.

Complexity Equation Score

3 9.16·104
M

0.359

33 2.86 · 105
(
0.0461 · 1.15y2

)−0.0250·1.15y
2

M2

0.387

35
2.86 · 105

(
0.0461 · 1.15y2

)−0.0250·1.15y
2

M2 + 0.117

0.00967

To compare the simulation and SR results to the PDF grid baseline, in Table 3 we use the following
fit quality metrics:

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,
MAE =

1

n

n∑
i=1

|yi − ŷi|, R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
,

where n is the number of data points, yi the actual value, ŷi the predicted value, and ȳ the mean of yi.
We see that SR achieves lower RMSE and MAE values, indicating a better overall fit quality with
the PDF grid. Additionally, the higher R2 value for the SR fit (0.9030 vs. 0.8898) reflects a stronger
correlation. These results demonstrate the capability of SR to model the data with good precision.

Table 3: Comparison of metrics of the reweighted simulation and the SR fit with respect to the PDF
grid.

Metric Reweighted simulation Symbolic regression

Root mean square error (RMSE) 6.09× 103 5.72× 103

Mean absolute error (MAE) 4.26× 103 3.74× 103

Coef. of determination (R2) 0.8898 0.9030

5 Conclusion

We have explored the application of SR to derive simple yet accurate analytical formulas in the context
of collider phenomenology. Using well-established QED processes as a benchmark, we validated
the reliability of SR by recovering known analytical expressions from noisy data under varying
conditions. Furthermore, we extended this methodology to SFs in Drell-Yan, showing the potential
of SR to provide accurate and simple results even in scenarios where no closed-form solutions are
available. This study highlights the utility of SR in simplifying and enhancing the analysis of complex
datasets in high energy physics, and could be extended to study more sophisticated uncertainties,
higher-dimensional distributions, or higher-order processes like those involving electroweak boson
production with angular coefficients [20–25].

SR combines machine learning with analytical expressions, enabling accurate closed-form models
from complex datasets. This work contributes to precision physics at the LHC and, more in general,
machine learning-assisted discovery in high energy physics.
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