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Abstract

We train a generative diffusion model (DM) to simulate ultra-relativistic heavy-ion
collisions from end to end. The model takes initial entropy density profiles as
input and produces two-dimensional final particle spectra, successfully reproducing
integrated and differential observables. It also captures higher-order fluctuations
and correlations. These findings suggest that the generative model has successfully
learned the complex relationship between initial conditions and final particle spectra
for various shear viscosities, as well as the fluctuations introduced during initial
entropy production and hadronization stages, providing an efficient framework for
resource-intensive physical goals. The code and trained model are available at
https://huggingface.co/Jing-An/DiffHIC/tree/main.

1 Introduction

The heavy-ion collision experiments carried out at the Large Hadron Collider (LHC) and the Rela-
tivistic Heavy Ion Collider (RHIC) create a new state of matter, quark-gluon plasma (QGP) [1–3].
However, the QGP cannot be detected directly because of the ultra-short lifetime(∼ 10−23s) and the
microscopic size (∼ 10−14m). One must resort to the theoretical model of the heavy-ion collisions
and match the experimental observables to infer the properties of the QGP [4, 5]. For this purpose,
multistage models have been developed [6–14] that consist of several stages including the initial
entropy production [15–24], viscous relativistic hydrodynamic evolution [25–31], and relativistic
hadronic transport [32–35].

Despite this success, the traditional numerical simulations of hydrodynamics struggle to confront
recent high-precision measurements. In experiments, the data from 109 ∼ 1010 collision events [36,
37] allow one to probe the finer details in the system, such as the nuclear structure [38–41] and
speed of sound in QGP [42–45], via statistics-demanding observables. It is quite challenging for
theoretical model calculations to achieve comparable precision, as the traditional numerical simulation
of hydrodynamics for one central event typically takes approximately 120 minutes (104 seconds) on
a single CPU. As heavy-ion collision physics enters a high-precision era, theoretical modeling needs
to evolve to meet the growing computational demands.

In this paper, we introduce DiffHIC (Diffusion Model for Heavy-Ion Collisions), a novel generative
diffusion model developed to generate final state two-dimensional charged particle spectra, based on
initial conditions and transport parameters. This marks the first application of a diffusive generative
model to the simulation of heavy-ion collisions. By comparing observables derived from particle
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spectra generated by both traditional numerical simulations and our trained generative model, we
demonstrate that DiffHIC not only accurately replicates integrated and differential observables
but also effectively captures higher-order fluctuations and correlations. These results indicate that
DiffHIC successfully learns the intricate mapping from initial entropy density profiles to final particle
spectra, governed by a set of nonlinear hydrodynamic and Boltzmann transport equations. While
preserving the intricate details of the underlying physical processes, DiffHIC significantly accelerates
end-to-end heavy-ion collision simulations. For example, DiffHIC accomplishes one single central
collision event in just 10−1 seconds on a GeForce GTX 4090 GPU.

Related work Machine learning methods have been utilized to speed up observables calcula-
tions [46–48]. In these approaches, specific observables are treated as training targets, which can limit
flexibility when incorporating other relevant observables. In contrast, our proposed model, DiffHIC,
is designed to generate the final charged particle spectra directly from initial conditions, providing
an end-to-end simulation framework. This allows for greater adaptability and more comprehensive
exploration of observables without retraining for each new target.

2 The generative diffusion model

The generative diffusion model is composed of two parts, the forward process and the reverse process.
In the forward process, the original data distribution is transformed to a known prior by gradually
injecting noise, which is governed by stochastic differential equation (SDE) [49],

dxxx = f(xxx, t)dt+ g(t)dwww. (1)

A corresponding reverse-time SDE [50],

dxxx = [f(xxx, t)− g(t)2∇xxx log pt(xxx)]dt+ g(t)dw̄ww, (2)

transforms the prior distribution back into the data distribution by gradually removing the noise.
Here, www and w̄ww are both standard Wiener processes, f(xxx, t) is the drift coefficient of xxx(t), and g(t)
is the diffusion coefficient of xxx(t). In this work, we take Variance Preserving (VP) SDE [49]. The
only unknown term is the score function ∇xxx log pt(xxx), which is estimated by a noise prediction
network εεε with parameter θθθ . With a trained noise prediction network εεεθθθ, one can generate the sample
from a prior standard normal distribution via the solution of reverse SDE. However, stochasticity is
introduced in the SDE solution, which will induce unphysical fluctuations in final particle spectra.
Therefore, we consider the corresponding probability flow ordinary differential equations (ODE) [49],
which converts the probabilistic models to the deterministic models. Additionally, fast sampling can
be performed through the numerical methods of ODE [51–53].

In the context of ultra-relativistic heavy-ion collisions, the final particle spectra are critically in-
fluenced by the initial entropy density profiles, as well as by physical parameters such as shear
viscosity. Therefore, we train a conditional generative diffusion model that takes these initial entropy
density profiles and shear viscosity as conditions to accurately generate the final particle spectra. To
incorporate the conditional information yyy into the generative process, we train such a noise prediction
network εεεθ(xxxt, yyy, t).

3 The multimessenger of heavy-ion physics

We briefly summarize the hybrid model for heavy-ion collisions. At the initial time τ0, the entropy
production is calculated with the TRENTO model [54], where fluctuations in the positions of the
nucleons and the contributed entropy in each nucleon-nucleon collision have been taken into account.
The system subsequently undergoes hydrodynamic evolution which is realized by MUSIC [26, 25, 27]
with a lattice QCD equation of state. In this work, we focus on the mid-rapidity region where the
dynamics can be approximated as effectively (2+1)-dimensional with longitudinal boost-invariance.
The bulk viscosity effect is neglected and the ratio of shear viscosity over entropy density is set
to be η/s = 0.0, 0.1, and 0.2. When the local energy density drops to a switching value εsw =
0.18 GeV/fm3, the transition from fluid to particles occurs through the Cooper-Frye formula [55, 56].
The particles with well-defined positions and momenta are randomly sampled from each fluid cell
individually by using the publicly available iSS sampler iSS. After particlization, UrQMD simulates
the Boltzmann transport of all hadrons in the system and considers the rescatterings among hadrons
and their excited resonance states, as well as all strong decay processes.
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4 The generative diffusion model for the heavy-ion collisions

In this work, we train a generative diffusion model to function as a heavy-ion collision event generator.
We carried out (2+1)D minimum bias simulations of Pb-Pb collisions at 5.02 TeV, choosing the shear
viscosity η/s to be one of three distinct values: 0.0, 0.1, and 0.2. For each value of η/s, we generate
12,000 pairs of initial entropy density profiles and final particle spectra, corresponding to 12,000
simulated events, as the training dataset. 70% of the total events are used for training and the rest are
used for validation.

Algorithm 1 Training DiffHIC
Input: Initial entropy profiles III , final particle spectra SSS pairs, and corresponding shear viscosity
η/s, number of diffusion steps T , noise schedule βt

Repeat
for each training iteration do

Sample pairs (III,SSS0, η/s) from the true data
Sample t ∼ Uniform({1, . . . , T})
Sample εεε from standard normal distribution
Compute noisy spectra SSSt =

√
ᾱtSSS0 +

√
1− ᾱtεεε

Compute loss Lt(θθθ) = ∥εεε− εεεθθθ(SSSt, III, t, η/s)∥2
Update model parameters θ using gradient descent on Lt(θ)

end for
Until convergence

We denote the particle spectra as SSS0 and the initial entropy density profiles as III . Considering that
the spectra SSS0 depend on the initial entropy density profiles III and the shear viscosity η/s, we train
a conditional reverse diffusion process p(SSS0|III, η/s) without modifying the forward process. We
employ an Unet as the noise-prediction network, denoted as εεεθ(SSSt, III, η/s, t). The initial entropy
density profiles and their corresponding particle spectra are concatenated along the channel dimension.
The diffusion time step t is embedded using a time-embedding layer, while the shear viscosity η/s is
encoded using a label-embedding layer. These two embeddings are subsequently summed. The input
particle spectra are perturbed by Gaussian noise, and the noisy spectra at time step t are given by
SSSt =

√
αtSSS0 +

√
1− αtεεε, where εεε denotes Gaussian noise. The training objective is to minimize

the mean squared error between the true noise εεε and the predicted noise εεεθ.

In this model, the total noise steps is T = 4000 and we chose a linear noise schedule from β1 =
0.5 × 10−4 to βT = 0.01. The batch size is set to 32 and the model is saved when the loss on the
validation dataset converges. It typically requires 12GB memory and 30h in a 4090 GPU for training.

5 Results

We use additional 10,000 events to assess the efficacy of DiffHIC by comparing its outputs with
numerical simulations, focusing on key experimental observables [1, 3, 4, 2, 29, 57–59]. In heavy-ion
collisions, the azimuthal emitted particle distribution can be often written as

1

2π

d2N

pT dpT dϕ
=

1

2π

dN

pT dpT

(
1 + 2

∞∑
n=1

vn(pT ) cos[n(ϕ−Ψn(pT ))]

)
, (3)

where vn(pT ) is the n-th order anisotropic flow coefficient and Ψn(pT ) is its corresponding flow
plane angle. Both are pT differential. One can also perform Fourier expansion for the pT integrated
spectra,

dN

dϕ
∝

(
1 + 2

∞∑
n=1

vn cos[n(ϕ−Ψn)]

)
, (4)

where vn is the n-th order integrated anisotropic flow and Ψn is its corresponding flow plane angle.
It won’t be a surprise that DiffHIC can precisely reproduce integrated observables, such as vn, which
we detail in the appendix. Here, what we pursue is the nice prediction of correlations and fluctuations
among these observables. This aspect is particularly demanding for a generative model but serves as
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an excellent evaluating criterion, as it requires precise alignment at the pixel level between the true
and generated spectra.

The flow correlations are called normalized mixed harmonic cumulants (nMHC) [60–62],
nMHC(vln, v

k
m) representing the (l + k)-particle correlations between vn and vm. The results

in Fig. 1 indicate that DiffHIC accurately predicts the true values for 4-particle correlations. Fur-
thermore, the model aligns well with the truth for 6-particle, and 8-particle correlations under the
uncertainties.

Figure 1: The normalized mixed harmonic cumulants are presented, with open markers indicating the
ground truth and colored bands representing the generated results. The first, second, and third rows
correspond to the 4-, 6-, and 8-particle cumulants, respectively. The shear viscosity values, from left
to right, are η/s = 0.0, 0.1, and 0.2.

The mean transverse momentum, ⟨pT ⟩, serves as a crucial observable, reflecting the temperature of
the quark-gluon plasma (QGP). For more nuanced physical investigations, higher-order fluctuations
of ⟨pT ⟩ are essential [63, 38, 64]. Figure 2 illustrates the centrality dependence of the two-point
and three-point correlators, ⟨δpT δpT ⟩ (left panel) and ⟨δpT δpT δpT ⟩ (right panel), respectively. The
predictions from the trained model are in excellent agreement with the results from numerical
simulations.

Figure 2: The centrality dependence of 2-particle and 3-particle pT correlator. The open marks are
the ground truth and the color bands are the generated results.

It has been seen that the DiffHIC can capture the observables with surprising precision, even on the
fluctuations. Let us focus on the correlations between flow vn and mean transverse momentum ⟨pT ⟩,
which have been put forward to constrain the nuclear shape [39–41, 65]. It can be calculated as,

ρn =
⟨v2n⟨pT ⟩⟩ − ⟨v2n⟩⟨⟨pT ⟩⟩

σv2
n
σ⟨pT ⟩

, (5)
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where σv2
n
, σ⟨pT ⟩ are the standard variance of v2n and ⟨pT ⟩, respectively. As Fig. 3 shows, the trained

model accurately reproduces the true ρn, making it possible to explore nuclear structure through
comprehensive hydrodynamic simulations.

Figure 3: The correlation between flow v2, v3, v4 and mean transverse momentum, with centrality
dependence. The open marks represent the ground truth, while the colored lines indicate the generated
results. This serves as a crucial probe into nuclear structure. From left to right, the shear viscosity
values are η/s = 0.0, 0.1, and 0.2, respectively.

6 Conclusions and Outlook

In this paper, the state-of-art generative model is for the first time trained to generate the final particle
spectra when taking the initial entropy density profiles, named DiffHIC. The trained model can not
only predict the integrated and differential observables, such as charged multiplicity, anisotropy flow
vn, and vn(pT ) (n = 2, 3, 4), but also capture the high-order fluctuations and the correlations among
the observables, including the 4-, 6-, and 8-particle flow cumulants, second and third event plane
correlations, second and third order ⟨pT ⟩ fluctuations, and vn and ⟨pT ⟩ correlations ρn (n = 2, 3, 4).
Unlike the traditional numerical simulations, including the hydrodynamic evolution and Boltzmann
transport, the DiffHIC is an end-to-end model. It speeds up the simulations typically 1,0000 times,
relaxing the time and resource concerns. It is as easy as preparing the initial conditions for the
time-consuming special physical goals.
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A supplemental material

A.1 The model parameters used when preparing the datasets

Initial Stage: We choose the most probable values from the Bayesian analysis, k = 1.0, w =
1.0, p = 0.0. The norm factors are set to 18.8, 14.4, 5 for PbPb@5.02TeV, PbPb@2.76Tev, and
AuAu@200GeV, respectively. The grid size is [−15, 15] 100*100

Hydrodynamic Stage: We turn off the bulk viscosity during the evolution. The initial time is 0.4 fm.
The freezeout energy density is chosen at 0.18 GeV/fm3. To view the effect of the shear viscosity, we
run simulations at three different values, 0.0, 0.1, 0.2.

Particlization and afterburner: we sample particles at the hyperface untill 100,000 thermal particles
are achieved and we use the default set in UrQMD.

A.2 The example of generated charged particle spectra

As good eye illustrations, Fig. 4 and 5 present the typical final particle spectra across all centralities.

Figure 4: The illustration of generated charged particle spectra, compared to the ground truth, from
0− 40% centralities. The first row is the ground truth. The second row is the generated spectra.

Figure 5: The illustration of generated charged particle spectra, compared to the ground truth, from
40− 80% centralities. The first row is the ground truth. The second row is the spectra generated.

A.3 The charged particle pT spectra and the anisotropy flow

We present charged particle transverse momentum spectra dN/2πpT dpT across all centralities in
Fig. 6. It is shown that the model predictions (color lines) perfectly agree with the ground truth
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(scatter black points). dN/2πpT dpT can be interpreted as the zero-order Fourier coefficients in Eq. 3.
Before going to the higher order, we first focus on the integrated anisotropy flow vn defined in Eq. 4.
In Fig. 7, the centrality dependence of vn, vn{2}, and vn{4} are shown, from left to the right. From
the first to the third row, the η/s = 0.0, 0.1, 0.2, respectively. We still use the color lines and black
points to indicate the generated and true results. We find that the DiffHIC can nicely describe the
integrated flow up to 4 − th order. For the v2, the 2- and 4-order cumulants can still be captured
successfully. However, it is challenging to predict the 4-order cumulants of v3, v4, which is easy to
understand because higher-order flow and cumulants require more accurate description.

Figure 6: The charged particle transverse momentum spectra. The black points are the ground truth.

Figure 7: The centrality dependence of integrated anisotropy flow. The black circle points are the
ground truth. The first row is the ideal hydrodynamic results. The second and third rows present the
results with η/s = 0.1, η/s = 0.2, respectively.

10



Figure 8: The pT dependence of integrated anisotropy flow, across all centralities. The black circle
points are the ground truth. The first row is the ideal hydrodynamic results. The second and third
rows present the results with η/s = 0.1, η/s = 0.2, respectively. In each plot, the red, blue, and
green lines represent v2(pT ), v3(pT ), and v4(pT ), respectively.

We next calculate the pT differential flow vn(pT ) to evaluate DiffHIC. As Fig. 8 shows, each
row presents the vn(pT ) across all centralities. Again, from the first to the third row, the η/s =
0.0, 0.1, 0.2, respectively. For the elliptic flow v2(pT ), it is easy for DiffHIC to get a nice prediction.
For higher order flow, there are little discrepancies when pT > 1.2 GeV, and the error is about 4.8%
for v3(pT ) and 9.7% for v4(pT ).

The 4-particle mixed harmonic cumulants (MHC) are identical to the symmetrical cumulants (SC),

MHC(v2n, v
2
m) = SC(n,m) = ⟨v2nv2m⟩ − ⟨v2n⟩⟨v2m⟩ (6)

The 6-particle cumulants are defined as,

MHC(v42 , v
2
3) = ⟨v42v23⟩ − 4⟨v22v23⟩⟨v22⟩ − ⟨v42⟩⟨v23⟩+ 4⟨v22⟩2⟨v23⟩,

MHC(v22 , v
4
3) = ⟨v22v43⟩ − 4⟨v22v23⟩⟨v23⟩ − ⟨v22⟩⟨v43⟩+ 4⟨v22⟩⟨v23⟩2,

MHC(v22 , v
2
3 , v

2
4) = ⟨v22v23v24⟩ − ⟨v22v23⟩⟨v24⟩ − ⟨v22v24⟩⟨v23⟩ − ⟨v23v24⟩⟨v22⟩+ 2⟨v22⟩⟨v23⟩⟨v24⟩,

The 8-particle cumulants are defined as,

MHC(v62 , v
2
3) = ⟨v62v23⟩ − 9⟨v42v23⟩⟨v22⟩ − ⟨v62⟩⟨v23⟩ − 9⟨v42⟩⟨v22v23⟩ − 36⟨v22⟩3⟨v23⟩

+ 18⟨v22⟩⟨v23⟩⟨v42⟩+ 36⟨v22⟩2⟨v22v23⟩
MHC(v42 , v

4
4) = ⟨v42v44⟩ − 4⟨v42v22⟩⟨v23⟩ − 4⟨v22v44⟩⟨v22⟩ − ⟨v42⟩⟨v44⟩ − 8⟨v22v22⟩2 − 24⟨v22⟩2⟨v23⟩2 + 4⟨v22⟩⟨v44⟩

+ 4⟨v42⟩⟨v23⟩2 + 32⟨v22⟩⟨v23⟩⟨v22v23⟩
MHC(v22 , v

6
3) = ⟨v22v63⟩ − 9⟨v22v43⟩⟨v23⟩ − ⟨v63⟩⟨v22⟩ − 9⟨v43⟩⟨v22v23⟩ − 36⟨v22⟩⟨v23⟩3

+ 18⟨v22⟩⟨v23⟩⟨v43⟩+ 36⟨v23⟩2⟨v22v23⟩,

To eliminate the flow magnitude effect, the heavy-ion community is more interested in the normalized
cumulants,

nMHC(vkm, vln) =
MHC(vkm, vln)

⟨vkm⟩⟨vln⟩
, (7)

nMHC(vkm, vln, v
q
p) =

MHC(vkm, vln, v
q
p)

⟨vkm⟩⟨vln⟩⟨v
q
p⟩

. (8)

Now, we focus on the mean transverse momentum and related fluctuation. In a single event, the ⟨pT ⟩
is the average transverse momentum of a particle. It reflects the temperature of the QGP. As Fig. 9
shows, it is expected that DiffHIC can perfectly describe such integrated observables.
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Figure 9: The centrality dependence of mean transverse momentum. The black circle points are the
ground truth.

We end this sub-section via the asymmetric cumulants shown in Fig. 10, which not only include the
correlations between flows but also the event planes. A good agreement is not a surprise because we
have nice predictions on the flow and event plane correlation independently.

Figure 10: The normalized asymmetric cumulants. The scatter circle points are the ground truth.

The second and third-order pT correlators are defined as,

⟨δpT δpT ⟩ =
〈∑

i ̸=j(pi − ⟨⟨pT ⟩⟩)(pj − ⟨⟨pT ⟩⟩)
Nch(Nch − 1)

〉
ev

(9)

⟨δpT δpT δpT ⟩ =
〈∑

i ̸=j ̸=k(pi − ⟨⟨pT ⟩⟩)(pj − ⟨⟨pT ⟩⟩)(pk − ⟨⟨pT ⟩⟩)
Nch(Nch − 1)(Nch − 2)

〉
ev
. (10)

In a single event, pi is the transverse momentum of i−th particle. Nch is the total number of charged
particles. ⟨⟨pT ⟩⟩ is the event-averaged mean transverse momentum. For efficient computations, in
each event, we define

Qn =

Nch∑
i=1

(pi)
n. (11)
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The ⟨pT ⟩ and sums over pairs and triplets of particles can be expressed simply in terms of Qn

(n = 1, 2, 3):

⟨pT ⟩ =
Q1

Nch
(12)∑

i̸=j

pipj = (Q1)
2 −Q2, (13)

∑
i ̸=j ̸=k

pipjpk = (Q1)
3 − 3Q2Q1 + 2Q3. (14)

Thus, the correlators can be simplified as,

⟨δpT δpT ⟩ =
〈

Q2
1 −Q2

Nch(Nch − 1)

〉
−
〈

Q1

Nch

〉2

(15)

⟨δpT δpT δpT ⟩ =
〈

(Q1)
3 − 3Q2Q1 + 2Q3

Nch(Nch − 1)(Nch − 2)

〉
− 3

〈
(Q1)

2 −Q2

Nch(Nch − 1)

〉〈
Q1

Nch

〉
+ 2

〈
Q1

Nch

〉3

.

(16)

The event plane correlations are another important observable in heavy-ion collisions. we plot the
different second and third event plane correlations in Fig. 11 respectively.

Figure 11: The second event plane correlations. The scatter circle points are the ground truth.
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