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Abstract
There is a growing attention given to utilizing Lagrangian and Hamiltonian me-
chanics with network training in order to incorporate physics into the network.
Most commonly, conservative systems with zero frictional losses are modeled,
which do not accurately represent physical reality. This work addresses systems
with dissipation using a novel neural network formulation of the Morse–Feshbach
Lagrangian. The Morse-Feshbach Lagrangian models dissipative dynamics by
doubling the number of dimensions of the system in order to create a ‘mirror’
latent representation that would counterbalance the dissipation of the observable
system, making it a conservative system. We start with their formal approach by
redefining a new Dissipative Lagrangian, such that the unknown matrices in the
Euler-Lagrange’s equations arise as partial derivatives of the Lagrangian with re-
spect to only the observables. We then train a network from simulated training
data for dissipative systems. As a model system, we choose a mechanical system
with frictional dissipation and show that the approach is able to accurately capture
dissipative dynamics. The approach is quite general and can be used to represent
other dissipative phenomena such as Fickian diffusion.

1 Introduction
Lagrangian mechanics recently has attracted growing interest for describing physics via machine
learning [1, 2, 3]. While the Lagrangian formulation has been very successful for describing sys-
tems in which quantities are conserved, real-world systems often contain dissipation. Such systems
include frictional or diffusional losses, the latter applying to thermal, viscous, or chemical transport
via Fick’s law. This work presents the results for a mechanical system with frictional losses and
shows the dynamics to be reversible by virtue of the fact that the trajectory in a lifted phase space is
deterministic.

1.1 Related Work
Cranmer, et al. [1] and Lutter et al. [3] developed a generalized way of fitting a Lagrangian to a
dataset and applied this to systems where quantities (e.g. energy) were conserved. Similar tech-
niques exist in the context of learning Hamiltonians [4, 5]. However, these techniques are only for
conserved systems without energy loss. Recently there has been significant interest in modeling
real world dissipative systems using this concept. Sosanya and Greydanus developed ‘dissipative
hamiltonian neural networks’ [6] which describes dissipative systems using a Hamiltonian and a
dissipative term. A similar method for Lagrangian neural networks [2] has been recently devel-
oped. However, these methods are specific to the case of Rayleigh dissipation and do not have wide
applicability to other physics such as diffusion.
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For dissipative systems, a more general theory builds on the approach proposed by Morse and
Feshbach[7] for treating dissipative systems with a Lagrangian approach. They start with the dif-
ferential equation for an oscillator with friction and propose a ‘purely formal expression’ for the
Lagrangian. The key idea is to double the number of coordinates [8] so that, if energy is lost through
dissipation, it is transferred to a ‘mirror image’ (latent) space. In this way, the energy of the doubled
dimension system remains constant.

1.2 Contribution
Our new contributions include: (1) development of a neural network based on Morse and Fesh-
bach’s formal Lagrangian expression while increasing its generality, (2) Proposing a new ‘Dissi-
pative Lagrangian’(D) that can capture evolution purely in terms of observables, and (3) using a
network to learn the form of the dissipative Lagrangian in the way of Cranmer, et al.[1]

All codes will be made freely available at publication time.

2 Preliminary Concepts
Morse and Feshbach started with the dissipative harmonic oscillator, governed by:

Mẍ+ Cẋ+Kx = 0 (1)

where M ∈ ℜ is a ‘mass,’ allowing for inertia of a system, C ∈ ℜ is a damping factor, K ∈ ℜ
is a ‘stiffness,’ and x ∈ ℜ is a generalized displacement variable representing the change from an
equilibrium value.

If C ̸= 0, the system is not conservative and conventional Lagrangian fails. To address this, they
proposed a ‘purely formal expression:’

L = M(ẋη̇)− 1

2
C(ηẋ− xη̇)−Kxη (2)

where L is the Morse–Feshbach Lagrangian and η ∈ ℜ defines displacements of a ‘mirror-image
oscillator’ with negative friction. This reproduces the original equations of motion via the pair of
Euler-Lagrange equations:

d

dt

∂L
∂η̇

− ∂L
∂η

= 0
d

dt

∂L
∂ẋ

− ∂L
∂x

= 0 (3)

Substituting in the Lagrangian in Equation 2, the first equation provides equation of motion for the
real system (Equation 1) and the second evolves the mirror system with negative damping. Hence:

Mẍ+ Cẋ+Kx = 0 Mη̈ − Cη̇ +Kη = 0 (4)

are the governing equations in the observable and mirror-image space, respectively.

3 Lagrangians for Multi-dimensional Dissipative Problems
We extend Morse and Feshbach’s expression (Equation (2) to a field capable of representing image
data containing N pixels. Replacing the scalar products with bilinear forms of matrices, we have:

L =
∑
ij

[
η̇iMij ẋj −

1

2
(ẋiCijηj − η̇iCijxj)− ηiKijxj

]
(5)

where Mij , Cij ,Kij ∈ ℜN×N and we have redefined ηi, xi ∈ ℜN , i ∈ [1, N ].

We only use observables for training. We introduce a new dissipative Lagrangian (D):

D =
∑
ij

[
1

2
ẋiMij ẋj +

1

2
ẋiCijxj +

1

2
xiKijxj

]
(6)

The Lagrangian L can then be rewritten as:

L =
∑
i

[
η̇i

∂D
∂ẋi

− ηi
∂D
∂xi

]
(7)
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Thus, the following equalities are satisfied:

∂L
∂ηi

= − ∂D
∂xi

,
∂L
∂η̇i

=
∂D
∂ẋi

(8)

Substituting this into the Euler-Lagrange equations, we obtain a vector form of Equation (3):

d

dt

∂D
∂ẋi

+
∂D
∂xi

= 0
d

dt

∂L
∂ẋi

− ∂L
∂xi

= 0 (9)

Unlike the original equation proposed by Morse and Feshbach, the first equation that models the
dynamics of the real system is now only related to the observables in the real system. The linear
differential operator of the first Euler-Lagrange equation now relates to the adjoint of that in the
second Euler-Lagrange equation. The matrices M , K and the symmetric part of C can be retrieved
from Equation 6 as:

Mij =
∂2D

∂ẋi∂ẋj
Kij =

∂2D
∂xi∂xj

Csym =
1

2
(Cij + Cji) =

∂2D
∂ẋi∂xj

+
∂2D

∂xi∂ẋj
(10)

While the above formulation is for classical mechanics, the approach is general enough to model
other equations. For example, Fickian diffusion of concentration field c described by the discretized
equation ċi +

∑
j Kijcj = 0 can be represented using Morse-Feshbach Lagrangian given by:

L =
∑
i

1

2
(η̇ici − ηiċi)−

∑
ij

ηiKijcj (11)

The auxiliary variable, η, can be understood as an ‘undiffuser’ here, so that while the observable, c,
dissipates, η ‘un-dissipates,’ allowing complete recovery of the state of the system at every moment.
If we define a dissipative Lagrangian D =

∑
i
1
2 ċici +

∑
ij

1
2ciKijcj , the matrix K follows as:

Kij =
∂2D

∂ci∂cj
.

4 Neural network architecture
The network used (Figure 1) was a fully connected network, consisting of two hidden layers of 200
neurons each and a final output layer of 1 neuron that was trained using the Adam optimizer for
1000 epochs per batch. A batch size of 1000 was used for all datasets.

𝑐

Autodifferentiate

 𝑐 Optimize

𝑥

 𝑥

Autodifferentiate

 𝑥 Optimize

(a) (b)

Figure 1: Neural network architectures for (a) diffusion problem and (b) the dissipative mechanics
problems

For the dissipative mechanics problems (Fig 1b), two initial condition vectors (position and velocity)
were used. In this case, the input layer took in both x and ẋ at time t as shown in Figure 1(b).
Each training set contained three vectors (x, ẋ, ẍ) at a given time step. The acceleration data was
only used in the loss function. The unknown stiffness and damping matrices were obtained via
autodifferentiation of the output D and used in the following loss function:

LDLNN = ||
∑
j

∂2D
∂ẋi∂ẋj

ẍdata,j+
∑
j

(
∂2D

∂ẋi∂xj
+

∂2D
∂xi∂ẋj

)
ẋdata,j+

∑
j

∂2D
∂xi∂xj

xdata,j || (12)

During inference, the input positions and velocities are used to compute the system matrices via
autodifferentiation of D. The acceleration is inferred using Eq. 1, and time-stepping is used to
propagate the solution. A similar network for modelling Fickian diffusion is shown in Fig. 1a.
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Parameter Value
K11 1
K22 1
K12 -0.4
C11 0.1
C12 0.1
C22 0.2
M 12×2

Table 1: Mass–spring–
damper system param-
eters.

Problem This work HNN [6] LNN [2] BaselineNN
Mechanics 1.06× 10−3 0.97× 10−3 1.18× 10−3 6.76× 10−3

Diffusion 1.08× 10−3 NA NA 8.21× 10−3

Table 2: Maximum error comparisons between the proposed method and
current techniques. Single oscillator (M=K=C=1) system for mechanics and
ten pixel Fickian diffusion (K is the Lehmer matrix). HNN and LNN models
are not applicable to diffusion problems.

x(t)

y(
t)

y(
t)

x(t) vx

v y

(a) (b) (c)

Figure 2: (a) Few training set examples. Each set consists of an array of 300 points with coordinates
[x(t), y(t), vx(t), vy(t)], the positions and velocities of each of the masses. x(t) and y(t) are plotted
as positions as shown. vx(t) and vy(t) are plotted as colors from the CIE LAB color model[10] with
luminosity (L) channel varying from 30 to 70 from initial time to end time. vx(t) is represented
by the a-channel and vy(t) by the b-channel.(b) Legend of velocities vs. color representation, (c)
Comparison between predicted and ground truth values for a test trajectory. Large dark circles
illustrate ground truth result. For clarity, only every tenth point is marked. In the computation, the
L2 norm was used for all 300 points.

5 Experiments
The first test case considered a simple problem of a mass–spring–damper system with parameters
given in Table 1. Training data contained simulated trajectories, based on time integration using an
explicit Runge-Kutta (4,5) formula, the Dormand-Prince pair [9], with initial positions and velocities
taken from a square grid formed by all permutations of xi, ẋi ∈ [0.2, 0.4], i ∈ [1, 2]. Example
trajectories are shown in Figure 2(a). The test data contained 625 new extrapolatory trajectories
xi, ẋi ∈ [0.15, 0.25, 0.3, 0.35, 0.45].

6 Results
Figure 2 (c) shows a trajectory of the test set predicted by the DLNN compared to the ground truth
solution. The mean RMS error for the test set of all 625 trajectories, as compared to ground truth,
was 1.54× 10−3, representing an ability to accurately predict the physical behavior of the system..
In Table 2, we compare the maximum error in the extrapolatory mode for the current model with
the model implementations for Refs [2, 6] and a baseline neural network that is directly trained to
predict the acceleration from the position and velocity data. The present model is comparable to the
published models and is superior to the baseline NN, but is also broadly applicable to other equations
such as Fickian diffusion. The errors measure the maximum RMS error of the result compared to
the ground truth in an extrapolatory case where the initial conditions were halved compared to the
training set.

7 Conclusions
We have developed a novel Lagrangian neural network model of dissipative systems. This approach
is based on the Morse and Feshbach[7] method of doubling coordinates to lift the problem to a space

4



where the system is conservative. The method is quite general and can be easily extended to other
physical equations (including diffusion, viscous flow, electromagnetics, and Schrodinger’s equation)
significantly broadening our understanding of physics using observed data.
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