
Robust Emulator for Compressible Navier-Stokes
using Equivariant Geometric Convolutions

Wilson G. Gregory
Dept. of Applied Mathematics and Statistics

Johns Hopkins University
Baltimore, MD, USA

David W. Hogg
Center for Cosmology and Particle Physics

Dept. of Physics
New York University, New York, NY, USA

Max-Planck-Institut für Astronomie
Heidelberg, Germany

Center for Computational Astrophysics
Flatiron Institute

New York, NY, USA

Kaze W. K. Wong
Dept. of Applied Mathematics and Statistics

Johns Hopkins University
Baltimore, MD

Soledad Villar
Dept. of Applied Mathematics and Statistics

Mathematical Institute for Data Science
Johns Hopkins University

Baltimore, MD, USA
Center for Computational Mathematics

Flatiron Institute
New York, NY, USA

Abstract

Recent methods to simulate complex fluid dynamics problems have replaced
computationally expensive and slow numerical integrators with surrogate models
learned from data. However, while the laws of physics are relationships between
scalars, vectors, and tensors that hold regardless of the frame of reference or chosen
coordinate system, surrogate machine learning models are not coordinate-free
by default. We enforce coordinate freedom by using geometric convolutions in
three model architectures: a ResNet, a Dilated ResNet, and a UNet. In numerical
experiments emulating 2D compressible Navier-Stokes, we see better accuracy and
improved stability compared to baseline surrogate models in almost all cases. The
ease of enforcing coordinate freedom without making major changes to the model
architecture provides an exciting recipe for any CNN-based method applied on an
appropriate class of problems.

1 Introduction

Understanding and modeling the Navier-Stokes equations for fluid dynamics is a critical problem in
astronomy, climate science, and many other fields. Traditional numerical solvers are accurate and are
considered a robust standard for solving the Navier-Stokes equations, but they can be computationally
expensive for systems that require a high resolution. Creating surrogate models with machine learning
(ML) methods has shown promise as an alternative. Once trained on the desired spatial and temporal
scales, these surrogate models can generate a solution from an initial condition much faster than a
traditional solver. However, long term stability in surrogate models remains a concern.

One potential culprit for unstable rollouts is that ML models are not coordinate-free by default; they
operate on the components of the vectors rather than the vectors themselves. Since the laws of physics

Machine Learning and the Physical Sciences Workshop, NeurIPS 2024.



are independent of our choice of coordinates [26], not respecting this coordinate independence may
undermine the accuracy and stability of the model. With the tools of equivariant machine learning,
we can make better and more efficient models by incorporating the rules of coordinate freedom.

The concept of equivariance is simple. Given a function f : X → Y and a group G with an action
on both X and Y , we say f is equivariant with respect to G if for all x ∈ X and g ∈ G we
have f(g · x) = g · f(x). For equivariant machine learning, we learn a function f over a class of
equivariant functions with respect to a relevant group, such as translations [17], gauge symmetries
[4], permutations [20], or rotations/reflections [3, 5, 28, 29]. We use equivariant ML for dynamical
systems by making our model equivariant to a group that expresses coordinate transformations.

There are many approaches to building equivariant models, such as using group convolutions [3]
or irreducible representations [5, 15, 29]. Closest to our paper in aims are [28] and [2], but they
implement the symmetries with irreducible representations and Clifford algebras respectively. Instead,
this paper will use geometric convolutions that operate on images and filters of vectors and tensors.
Our follow-on work [10] explores the topic more thoroughly, including more background and all
proofs.

In section 2 we provide the background for geometric convolutions and how to use them to create an
equivariant model, and in section 3 we discuss the problem setup and numerical results.

2 Methods

2.1 The Geometric Image

We start by describing tensors, their operations, and geometric images following the roadmap of [10].
Our geometric objects are scalars, vectors, and tensors and their negative parity counterparts (i.e.
pseudoscalars, pseudovectors, and pseudotensors) in fixed dimension d, usually assumed to be 2 or 3.
In this setting, the coordinate transformations will be given by the action of the orthogonal group
O(d).

A scalar is a value s ∈ R that is unchanged under coordinate transforms, i.e. for group element
g ∈ O(d), we have g · s = s. A vector is an element v ∈ Rd that is transformed by g · v = M(g) v
for all g ∈ O(d). Here, M(g) is the standard matrix representation of g. A rank-1 order k tensor is
the tensor (outer) product of k vectors, i.e. t = v1 ⊗ . . .⊗ vk, and the action of O(d) on a tensor is
defined as the product of the action in each order of the tensor:

g · (v1 ⊗ . . .⊗ vk) = (g · v1)⊗ . . .⊗ (g · vk) . (1)

To get higher rank tensors, we can add multiple rank-1 tensors and the action of O(d) extends linearly.

When a group element g includes a reflection and acts on a negative parity object, that object will
also undergo a sign flip. For example, a familiar pseudovector is angular velocity. We will refer to all
these geometric objects as k(p)-tensors, where p = ±1 is the parity.

We will use Einstein summation notation to define the allowed operations on tensors. For example, if
a and b are k(p)-tensors then a+ b is a k(p)-tensor defined as [a+ b]i1,...,ik = [a]i1,...,ik + [b]i1,...,ik .
If a is a k(p)-tensor and b is a k′(p′)-tensor, then the tensor product is a (k + k′)(p p′)-tensor defined
as

[a⊗ b]i1,...,ik,ik+1,...,ik+k′ = [a]i1,...ik [b]ik+1,...,ik+k′ (2)

If a is a (k′ + 2k)(p)-tensor, then the k-contraction ιk(a) is defined as

[ιk(a)]i1,...,ik′ = [a]j1,...,jk,j1,...,jk,i1,...,ik′ (3)

where, by Einstein summation notation, j1, . . . , jk are implicitly summed over. Using the k-
contraction, we define the ℓ2-norm extended to k(p)-tensor a as ∥a∥2 =

√
ιk(a⊗ a).

A k(p)-tensor geometric image is a Nd grid where each pixel has a geometric object of the same type.
We also consider k(p)-tensor images on the d-torus, where the grid is given the algebraic structure of
(Z/NZ)d. All the tensor operations described above have analogous definitions for the geometric
image where each operation is performed pixel-wise.

Finally, [10] introduces a new operation: geometric convolution. If A is a k(p)-tensor image and C is
a k′(p′)-tensor image then the geometric convolution, denoted A ∗ C, is a (k + k′)(p p′)-tensor image

2



* =

* =

k=3

k=2

k=1 A

k=0 B

Image Block

Convolution

Contraction

Nonlinearity

(vector image)

tensor order

f(A,B)

(model output)

(scalar image)

(a) (b)

Figure 1: (a) Convolution of a scalar image with a pseudovector and pseudoscalar filter. (b) Example
architecture taking a vector image and scalar image as input and output. Linear layers are shown
by the blue convolution arrows followed by green contraction arrows. The black arrows represent
nonlinearities. The orange blocks represent multiple channels of images at that tensor order.

where the normal multiplication of convolution has been replaced with the tensor product. See Figure
1 for an example of geometric convolution.

2.2 Equivariance and the Geometric Image

The coordinate transformations of geometric images will be given by a group of translations of pixels
on the torus and rotations/reflections that rotate both the overall image and the geometric objects in
each pixel. The tensor operations of the preceding section are equivariant to O(d) [21]. However,
since the geometric image is not a continuous tensor field but a discretization onto a grid, we want to
use a discrete subgroup of O(d) to avoid rotations that do not return the pixels to the same grid. Thus
we work with Bd, the Euclidean symmetries of the d-dimensional hypercube.

The group Bd acts on geometric images by rotating the entire image as well as rotating the tensor in
each pixel. Our full group, denoted GN,d, is the semi-direct product of translations on the d-torus and
Bd. A function f on geometric images is equivariant to GN,d if for all k(p)-tensor images A and all
g ∈ GN,d we have f(g ·A) = g · f(A). Additionally, f is invariant to GN,d if f(g ·A) = f(A) and
an image B is isotropic if g ·B = B. It is straightforward to show that convolutions are equivariant
when we consider both the image and the filter as input, that is, g · (A ∗ C) = (g · A) ∗ (g · C).
However, we would like our filter C to be fixed for all inputs A and maintain the equivariance. This
can be achieved by using the isotropic filters, a result shown in [3]. We combine this idea with ideas
from [16] and the rules of linear tensor functions [7] to get the result below. This theorem is described
and proven in [10, Theorem 1] and is similar to [9, Theorem 3.1], which characterizes polynomials
on point clouds that are equivariant to permutations and rotations.

Theorem 2.1 (informal). A function from k(p)-tensor images to k′(p′)-tensor images is linear and
GN,d-equivariant if and only if it can be written as ιk(A ∗ C) for some Bd-isotropic (k + k′)(p p′)-
tensor filter C.

2.3 Building the Equivariant Model

We now have the necessary tools to build our model. Each layer in the network operates on a
collection of geometric images of any combination of tensor order and parity with one or more
channels. The layers used in this work are linear, pointwise nonlinear, LayerNorm [1], and max pool.

The linear layers take an input collection of geometric images {(ki, pi)}Win
i=1 with ci channels and

the desired output tensor orders and parities {(kj , pj)}Wout
j=1 with cj channels and computes all the

convolutions and contractions to map between those two sets. Following Theorem A.1, there are
ℓ = 1, . . . , cj functions

Win∑
i=1

ci∑
z=1

ιki
(Ai,z ∗ Cℓ,i,z) (4)

3



1

Predicted

True

Difference

Power
Spectrum

2 3 4 5

(a) (b)

Figure 2: (a) Five steps of M0.1 rollout using the best performing model, the equivariant UNet
without LayerNorm. The x-component of the velocity is plotted. (b) Comparison of test performance
over a 15 step rollout. The SMSE is shown for each step, rather than a cumulative loss.

for each desired output tensor order and parity. Per the theorem, these convolution filters Cℓ,i,z must
be Bd-isotropic to guarantee that this layer is GN,d equivariant. We construct a basis of Bd-isotropic
filters using group averaging as detailed in [10], and then take a parameterized linear combination to
get our filters. However, using filters as large as the input image is impractical in most cases, so we
use deeper networks of 3× 3 or 5× 5 filters, as is commonly done in CNNs [23].

The typical pointwise nonlinear functions such as ReLU or tanh break equivariance when applied to
the individual components of a tensor. Properly building O(d)-equivariant nonlinear functions is a
challenging and active area of research; for a larger exploration, see [30] and references therein. For
this model, we extend the Vector Neuron nonlinearity [6] for any tensor order and parity. See Figure
1 for an example of a typical architecture interlacing linear and nonlinear layers.

The final layer types we will use in our model are LayerNorm and max pool. To make an equivariant
version of LayerNorm, we follow the strategy of vector whitening used in [2], based on a similar
strategy developed for neural networks with complex values [27]. Max pooling layers use the ℓ2
tensor norm to determine the max tensor for each channel of each input image.

3 Numerical Experiments

We use 2D compressible Navier-Stokes simulation data from the excellent PDEBench [25]. This
data consists of a velocity field, a density field, and a pressure field. The baseline methods will treat
these as four input channels of a typical CNN, but of course our equivariant methods recognize these
as a vector image and two scalar images. The images are 128× 128 pixels on the torus–that is, the
data is generated with periodic boundary conditions. We use data generated with two distinct set
of parameters: Mach number M = 0.1, shear viscosity η = 0.01, and bulk viscosity ζ = 0.01 and
M = 1.0, η = 0.1, ζ = 0.1. The simulations are saved at 21 time points which are a subset of the
integrator timesteps.

We use 128 simulation trajectories with random initial conditions as training data and another 128
trajectories as test data. Each model takes as input four consecutive time steps of each field, and
outputs each field of the next time step. Thus we can turn those 128 trajectories into 2, 176 training
data points because each trajectory has 17 overlapping sections of four input steps and one output
step. We train a Dilated ResNet [24], a ResNet [12], and a UNet [22] with and without LayerNorm
[1] and equivariant counterparts of each of those models. We train with the MSE loss of a single step,
but at test time we are also interested in the performance of autoregressively rolling out the model
over 15 time steps. The baseline models and training setup generally follow those described in [11],
and additional data, model, and training details are in Appendix B.

The numerical results are given in Table 1. With the exception of the 15 step rollout of the UNet
LayerNorm, the equivariant version of each model outperforms the non-equivariant version in every
case. In Figure 2, we can see with more granularity the test performance for each rollout step. In the

4



model M0.1 1-step M0.1 rollout M1.0 1-step M1.0 rollout

DilResNet 0.040 13318.773 ± 18824.855 0.005 9.574 ± 9.608
DilResNet Equiv 0.018 3.770 ± 0.090 0.001 0.153 ± 0.023

ResNet 0.039 175.736 ± 17.846 0.009 0.835 ± 0.097
ResNet Equiv 0.024 ± 0.001 57.508 ± 9.157 0.003 2.943 ± 0.992

UNet LayerNorm 0.027 3.414 ± 0.217 0.009 ± 0.001 1.067 ± 0.190
UNet LayerNorm Equiv 0.018 ± 0.002 3.971 ± 1.158 0.001 0.136 ± 0.047

UNet 0.047 ± 0.001 5.086 ± 0.105 0.012 ± 0.002 2.074 ± 0.066
Unet Equiv 0.018 2.813 ± 0.257 0.001 0.124 ± 0.018

Table 1: Loss values for each model, averaged over three trials. All losses are the sum of the mean
squared error losses over the channels: density, pressure, and velocity. The rollout loss is the sum of
the error over 15 steps. The std ±0.xxx is provided if its at least 0.001.

most drastic example, the rollout error for the Dilated ResNet explodes, while the equivariant Dilated
ResNet is stable and accurate over all 15 steps. In [24], the authors combat this issue by adding a
small amount of Gaussian noise during training; we instead achieve stability in a physically-motivated
way by enforcing O(d)-equivariance. The equivariance also helps with parameter efficiency; we
chose the channel depth so that the equivariant model was comparable to the baseline model in
parameter count (Table 1), however we could also have aimed for the same accuracy to get a large
reduction in the number of parameters.

One interesting area for further research is how and why the equivariance helps. One interesting
observation of Figure 2 (a) is that the power spectrum for the equivariant model output is still quite
different from the ground truth at higher frequencies. It may be that equivariance is advantageous at
certain scales and not at others.

Acknowlegements: It is a pleasure to thank Roger Blandford (Stanford), Drummond Fielding
(Flatiron), Leslie Greengard (Flatiron), Ningyuan (Teresa) Huang (JHU), Kate Storey-Fisher (NYU),
and the Astronomical Data Group at the Flatiron Institute for valuable discussions and input. All the
code used for making the data and figures in this paper is available at https://github.com/
WilsonGregory/GeometricConvolutions.

Funding: WG was supported by NSF CISE 2212457. SV was partly supported by the NSF–Simons
Research Collaboration on the Mathematical and Scientific Foundations of Deep Learning (MoDL)
(NSF DMS 2031985), NSF CISE 2212457, ONR N00014-22-1-2126, and NSF CAREER 2339682.

References
[1] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization, 2016.

[2] Johannes Brandstetter, Rianne van den Berg, Max Welling, and Jayesh K. Gupta. Clifford
neural layers for pde modeling, 2023.

[3] Taco Cohen and Max Welling. Group equivariant convolutional networks. In International
conference on machine learning, pages 2990–2999. PMLR, 2016.

[4] Taco S. Cohen, Maurice Weiler, Berkay Kicanaoglu, and Max Welling. Gauge equivariant
convolutional networks and the icosahedral cnn, 2019.

[5] Taco S. Cohen and Max Welling. Steerable cnns, 2016.

[6] Congyue Deng, Or Litany, Yueqi Duan, Adrien Poulenard, Andrea Tagliasacchi, and Leonidas
Guibas. Vector neurons: A general framework for so(3)-equivariant networks, 2021.

[7] Yu. I. Dimitrienko. Tensor Analysis and Nonlinear Tensor Functions. Springer Dordrecht, 1
edition, June 2013.

[8] Vincent Dumoulin and Francesco Visin. A guide to convolution arithmetic for deep learning,
2018.

5

https://github.com/WilsonGregory/GeometricConvolutions
https://github.com/WilsonGregory/GeometricConvolutions


[9] Ben Finkelshtein, Chaim Baskin, Haggai Maron, and Nadav Dym. A simple and universal
rotation equivariant point-cloud network, 2022.

[10] Wilson Gregory, David W. Hogg, Ben Blum-Smith, Maria Teresa Arias, Kaze W. K. Wong, and
Soledad Villar. Geometricimagenet: Extending convolutional neural networks to vector and
tensor images, 2023.

[11] Jayesh K. Gupta and Johannes Brandstetter. Towards multi-spatiotemporal-scale generalized
pde modeling, 2022.

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition, 2015.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Identity mappings in deep residual
networks, 2016.

[14] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023.

[15] Erik Jenner and Maurice Weiler. Steerable partial differential operators for equivariant neural
networks. arXiv preprint arXiv:2106.10163, 2021.

[16] Risi Kondor and Shubhendu Trivedi. On the generalization of equivariance and convolution
in neural networks to the action of compact groups. Proceedings of the 35th International
Conference on Machine Learning, 2018.

[17] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne
Hubbard, and Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition.
Neural Computation, 1(4):541–551, 1989.

[18] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017.

[19] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International
Conference on Learning Representations, 2019.

[20] Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant
graph networks, 2019.

[21] M. M. G. Ricci and Tullio Levi-Civita. Méthodes de calcul différentiel absolu et leurs applica-
tions. Mathematische Annalen, 54(1):125–201, 1900.

[22] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for
biomedical image segmentation, 2015.

[23] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition, 2015.

[24] Kim Stachenfeld, Drummond Buschman Fielding, Dmitrii Kochkov, Miles Cranmer, Tobias
Pfaff, Jonathan Godwin, Can Cui, Shirley Ho, Peter Battaglia, and Alvaro Sanchez-Gonzalez.
Learned simulators for turbulence. In International Conference on Learning Representations,
2022.

[25] Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Dan MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning, 2024.

[26] Kip S. Thorne and Roger D. Blandford. Modern Classical Physics: Optics, Fluids, Plasmas,
Elasticity, Relativity, and Statistical Physics. Princeton University Press, 2017.

[27] Chiheb Trabelsi, Olexa Bilaniuk, Ying Zhang, Dmitriy Serdyuk, Sandeep Subramanian, João Fe-
lipe Santos, Soroush Mehri, Negar Rostamzadeh, Yoshua Bengio, and Christopher J Pal. Deep
complex networks, 2018.

[28] Rui Wang, Robin Walters, and Rose Yu. Incorporating symmetry into deep dynamics models
for improved generalization, 2021.

6



[29] Maurice Weiler and Gabriele Cesa. General e(2)-equivariant steerable cnns, 2021.

[30] Yinshuang Xu, Jiahui Lei, Edgar Dobriban, and Kostas Daniilidis. Unified fourier-based kernel
and nonlinearity design for equivariant networks on homogeneous spaces, 2022.

A Claims and Extensions

The formal statement of Theorem 2.1 is given below. The proof is given in [10].

Theorem A.1. A function f : AN,d,k,p → AN,d,k′,p′ is linear and GN,d-equivariant if and only if it
can be written as ιk(A ∗ C) for some Bd-isotropic C ∈ AM,d,k+k′,p p′ , where M = N if N is even
and M = N + 1 otherwise.

We extend the vector neuron nonlinearity of [6] for any set of k(p)-tensor images as follows.

Definition A.2. Let Ai ∈ AN,d,k,p for i = 1, . . . , c be c channels of input geometric images. Let
αi, βi ∈ R for i = 1, . . . , c be learned scalar parameters, and Q =

∑c
i=1 αi Ai,K =

∑c
i=1 βi Ai.

Then the nonlinearity σ : (AN,d,k,p)
c → AN,d,k,p is defined:

σ((Ai)
c
i=1) =

{
Q if ιk(Q⊗K) ≥ 0

Q− ιk

(
Q⊗ K

∥K∥2

)
K

∥K∥2
otherwise

(5)

where ∥·∥2 is the tensor norm. To get c output channels, we can repeat this function c times with
different learned parameters αi, βi.

The max pool function for a geometric image is defined as follows.

Definition A.3 (max poolb). Let b be a positive integer and let A ∈ AN,d,k,p, where b divides N . Then
the function max poolb : AN,d,k,p → AN/b,d,k,p is defined for each pixel index ı̄ ∈ [0, (N/b)− 1]d:

max poolb(A)(̄ı) = A

(
b ı̄+ argmax

ā∈[0,b−1]d
∥A(b ı̄+ ā)∥2

)
(6)

B Experimental Details

B.1 Data

The data is the PDEBench file

2D_CFD_Rand_M0.1_Eta0.01_Zeta0.01_periodic_128_Train.hdf5

which can be found at https://darus.uni-stuttgart.de/file.xhtml?fileId=
164687&version=8.0. We used the first 128 trajectories as training data, the next 32 trajectories
as a validation set, and the next 128 trajectories as a test data set.

B.2 Models

Model specifics are described below. For equivariant models, we always use ReLU for scalars and the
Vector Neuron activation for non-scalars. For equivariant encoder and decoder blocks, we use 3× 3
filters instead of 1× 1 filters because for some order and parity pairs, there are no 1× 1 Bd-isotropic
filters. All convolutions use biases except for the UNet. For equivariant models, the bias is a scale of
the mean tensor of that image. Additional details are in Table 2.

• Dilated ResNet [24]: The model starts with two “encoder” convolutions with 1× 1 filters
and ReLU activations. There are four blocks, each consisting of seven convolutions with di-
lations of 1, 2, 4, 8, 4, 2, 1 with associated ReLU activations. There are residual connections
connecting each block. The model concludes with two “decoder” convolutions with 1× 1
filters and a ReLU activation between the two.

7

https://darus.uni-stuttgart.de/file.xhtml?fileId=164687&version=8.0
https://darus.uni-stuttgart.de/file.xhtml?fileId=164687&version=8.0


• ResNet [12]: This model consists of 8 blocks of 2 convolutions each with residual con-
nections between each block. Each block also has LayerNorm and a GeLU activation [14].
We put the LayerNorm and activation prior to the convolution (preactivation order [13])
following [11]. This model also uses two “encoder” 1× 1 convolutions and two “decoder”
1× 1 convolutions.

• UNet LayerNorm [11]: This model is referred to as “UNetBase” in [11]. This starts
with an embedding block with a convolution with a 3× 3 filter following by LayerNorm
and a GeLU activation [14]. Next comes a max pool2 followed by two convolutions with
LayerNorm and GeLU activation. This is process is repeated for 4 total downsamples,
and notably the number of convolution channels is doubled for every down sample. Then
the process happens in reverse, with max pooling replaced with transposed convolution to
double the spatial size instead of halving it each time. See [8] for a description of transposed
convolution. The number of convolution channels is also halved each time we upsample.
The final kicker is that there are also residual connections from before each downsample
to after each upsample for the appropriate spatial size. The model concludes with a final
convolution. In the equivariant model we do not include the LayerNorm because it hurt the
performance.

• UNet [22]: This model is the same as the one above, except is uses BatchNorm instead of
LayerNorm and the convolutions are without biases.

model params CNN channels norm bias learning rate
DilResNet 1,043,651 64 - Yes 2e-3

DilResNet Equiv 979,347 48 - Mean 1e-3
ResNet 2,401,155 128 LayerNorm Yes 1e-3

ResNet Equiv 2,558,703 100 LayerNorm Mean 7e-4
UNet LayerNorm 31,053,251 64 LayerNorm Yes 8e-4

UNet LayerNorm Equiv 27,077,139 48 - Mean 4e-4
UNet 31,046,400 64 BatchNorm No 8e-4

UNet Equiv 27,066,864 48 - No 3e-4
Table 2: Comparison of various models. The number of channels of each model was chosen so that
the equivariant and non-equivariant models have roughly the same number of parameters.

B.3 Training

For a loss function, we use the sum of mean squared error loss, or SMSE. This loss sums over the
tensor components and the channels and takes the mean over the spatial components. If {Ai}ci=1 are

the true ki(pi)-tensor images and
{
Âi

}c

i=1
are our predicted ki(pi)-tensor images, then the Lsmse is

defined as,

Lsmse

(
{Ai}ci=1,

{
Âi

}c

i=1

)
=

c∑
i=1

1

Nd

∑
ı̄

∥∥∥Ai(̄ı)− Âi(̄ı)
∥∥∥2
2
, (7)

where ∥·∥2 is the tensor norm. When calculating a rollout loss, we simply sum the loss of each rollout
step.

We follow a similar training regime as in [11]. We train for 50 epochs using the AdamW optimizer
[19] with a weight decay of 1e-5 and a cosine decay schedule [18] with 5 epochs of warmup.
Learning rates were tuned for each model, searching for values between 1e-4 and 2e-3, and are
included in Table 2.

We trained on 4 RTX A5000 graphics cards with a batch size of 8, for an effective batch size of
32. Experiments we averaged over 3 trials, using the same training data each time. It possible that
different optimizers, learning rate schedules, batch sizes, or other hyperparameters may perform
better on the task, but we held those fixed and only tuned the learning rate since our focus is on
comparing the equivariant and non-equivariant models.

8


	Introduction
	Methods
	The Geometric Image
	Equivariance and the Geometric Image
	Building the Equivariant Model

	Numerical Experiments
	Claims and Extensions
	Experimental Details
	Data
	Models
	Training


