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Abstract

Air pollution is a global hazard, and as of 2023, 94% of the world’s population is
exposed to unsafe pollution levels. Surface Ozone (O3), an important pollutant,
and the drivers of its trends are difficult to model, and traditional physics-based
models fall short in their practical use for scales relevant to human-health impacts.
Deep Learning-based emulators have shown promise in capturing complex cli-
mate patterns, but overall lack the interpretability necessary to support critical
decision making for policy changes and public health measures. We implement an
uncertainty-aware U-Net architecture to predict the Multi-mOdel Multi-cOnstituent
Chemical data assimilation (MOMO-Chem) model’s surface ozone residuals (bias)
using Bayesian and quantile regression methods. We demonstrate the capability of
our techniques in regional estimation of bias in North America and Europe for June
2019. We highlight the uncertainty quantification (UQ) scores between our two
UQ methodologies and discern which ground stations are optimal and sub-optimal
candidates for MOMO-Chem bias correction, and evaluate the impact of land-use
information in surface ozone residual modeling.

1 Introduction

The latest estimate of the global burden of disease indicates that ambient air pollution, including
fine particulate matter and ozone, contributes to an estimated 5.2 million deaths each year (Huang
et al., 2024). To effectively assess the level of human exposure to air pollution, accurate and timely
estimates are necessary. MOMO-Chem, a state-of-the-art data assimilation framework for modeling
surface ozone, has shown significant progress in capturing large-scale ozone estimates (Miyazaki
et al., 2020). The MOMO-Chem uses four Chemical Transport Models, namely GEOS-Chem (Bey
et al., 2001), AGCM-CHASER (Sudo et al., 2002), MIROC-Chem, and MIROC-Chem-H (Watanabe
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et al., 2011) that utilize multi-constituent satellite data and an ensemble Kalman filter to propagate
observational information in time and space from a limited number of observed species to a wide
range of chemical components. However, the model struggles with finer-scale ozone analysis due
to large systematic estimation errors (hereby referred to as bias), leading to a limited understanding
of surface-level air quality and consequentially, its health impacts. In MOMO-Chem, bias can be
driven by a mixture of poorly constrained processes including atmospheric chemistry, anthropogenic
emissions and planetary boundary layer dynamics. AI-powered climate model emulators have grown
in popularity for their relative speed and computational power to capture complex climatological
processes compared to physics-based models. A neural network approach for a statistical Regional
Climate Model-emulator to learn the relationship between large-scale predictors and a local surface
variables has been developed (Doury et al., 2023), and ClimateBench provides a benchmarking
framework for AI climate emulation, of which a range of emissions and concentrations of carbon
dioxide, methane and aerosols is provided (Watson-Parris et al., 2022). To transform estimates into
decisions, and for acceptance by the scientific community, these models must provide a measurement
of confidence. Uncertainty Quantification provides metrics by which we can evaluate AI-generated
estimates that gives confidence to users, but there is currently no "one-size fits all" UQ methodology
widely accepted by the scientific community. Some work has been done to utilize UQ in a scientific
setting in selective classification to support clinical trials through withholding predictions in uncertain
scenarios (Y et al., 2024), and in a climate context, selective prediction based on predictive uncertainty
for wind speed estimation of tropical cyclones with Deep Neural Networks (Lehmann et al., 2024).
Our downstream task is similar to selective prediction, in that we would like to identify ground
stations candidates for bias correction by domain experts using the predictive uncertainty as a
metric for easy/difficult candidates to correct. We explore and compare two UQ methodologies
using a Bayesian approximation and quantile-based method via Monte-Carlo (MC) Dropout and
Conformalized Quantile Regression (CQR) to discern the differences in UQ for modeling surface
ozone bias in our Deep Learning air quality emulator. We investigate which ground-based air quality
stations are the easiest and most difficult to model, and explore model performance with and without
the integration of additional land-use information via Google Earth Engine satellite products to
targeting surface ozone bias. We further extend our predictions to extrapolate predictions beyond
the ground station coverage in North America. Our work aims to answer the following questions on
modeling surface ozone bias in our Deep Learning emulator:

1. Do we observe spatial consistencies in UQ techniques?
2. Does the addition of land-use information improve model performance?
3. Which ground stations do we struggle/excel at capturing bias?

2 Dataset

Input. Our input image size ranges for the two geographic extents; 31x49 for North America and
31x27 for Europe. We investigate two feature space setups, a 28-channel input of only MOMO-Chem
features selected by atmospheric science domain expert insight, consisting of: BrOx, C10H16, C2H6,
C3H6, C5H8, CH2O, H2O2, HNO3, HO2, N2O5, NH3, OH, PAN, CO, COflux, NO, NO2, NOxFlux,
precipitation, surface pressure, water vapour, long and short wave radiation, outgoing longwave
radiation, temperature, cloud cover, and wind direction, and a 51-channel input of combined MOMO-
Chem and Google Earth Engine (GEE) extracted satellite data products. GEE data was extracted and
processed using the airPy package1 and includes the mode, variance, and percent coverage per land
class per grid from the MODIS Land Cover Yearly product and the variance, maximum, minimum
and average from the Global Population Density product (Sulla-Menashe and Friedl; CIESIN, 2018).
All data is rasterized to a 11.1kmx11.1km resolution.

Target. Our target is surface ozone bias, represented by the residuals of the difference between
the MOMO-Chem 8-hour ozone data and our ground truth data of 8-hour daytime surface ozone
measurements from the Tropospheric Ozone Assessment Report (TOAR) database, which provides
up-to-date, global, near surface ozone measurements (Schultz et al., 2017). Though the TOAR
network provides one of the best global databases or ground-based surface ozone measurements,
spatial coverage is highly concentrated over North America and Europe as shown in Figure 1,
prompting our selection of a regional-model approach.

1https://github.com/kelsdoerksen/airPy
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Figure 1: TOAR Ground station coverage. White represents TOAR coverage, gray no coverage.

3 Methodology

Experimental Setup. We have a dataset D which contains (xi, yi)i where xi ∈ X is multi-channel
array of chemical and physical information describing the Earth’s atmosphere and surface conditions
about a location I and yi ∈ Y is the MOMO-Chem model bias. We train individual models for North
America and Europe extents, respectively. Models are trained on daily samples from 2005-2018
June using a 90/10 train/validation split. We test performance on a held-out test set of daily samples
from June 2019. We leverage a U-Net architecture with Adam optimization, constant learning rate
of 1e-3 and train for 200 epochs with a dropout rate of 0.1. Our MC-Dropout model uses Negative
Log likelihood loss, and our CQR model uses Quantile loss. For our CQR model, we set our target
coverage percent to 90. Our CQR model therefore has three predictive heads targeting 0.05, 0.5,
and 0.95 quantiles to generate the 90th percentile predictive interval and the point prediction (using
quantile 0.5). We run experiments with 5 random seeds and report average scores and variance.

Uncertainty Quantification We employ two deep learning UQ methodologies, a Bayesian approxi-
mation approach via Monte-Carlo Dropout, and a quantile-based method via Conformalized Quantile
Regression. Monte-Carlo Dropout, or MC-Dropout, utilizes dropout as a Bayesian approximation
during inference to compute the prediction uncertainty (Gal and Ghahramani, 2016). Conformalized
Quantile Regression generates lower and upper bound prediction intervals between which the target
variable lies with high probability. The uncertainty in the prediction of the target variable is quantified
by the length of the prediction interval, calculated by the difference of the upper and lower prediction
bounds (Romano et al., 2019). This process is achieved by splitting our training set into halves
representing a training and calibration set.

Evaluation. We evaluate the incorporation of land-use data on model performance by comparing
RMSE scores and UQ metrics (interval length, epistemic uncertainty) with 28 vs 51-channel inputs.
We highlight epistemic uncertainty from MC-Dropout as this can be reduced with including more
information (Hüllermeier and Waegeman, 2019). We further evaluate our UQ methods by spatially
plotting the averaged scores to observe, if any, visible signatures of high and low UQ regions.

4 Results

Table 1: Comparison of averaged model results using Conformalized Quantile Regression (CQR)
and Monte-Carlo Dropout (MCD) uncertainty quantification for North America (NA), Europe (EU)
models for 28 and 51 Features (Feats). All results are averaged for the 2019 June test set. Interval
refers to CQR predictive interval length. RMSE reported with variance across 5 random seeds.

UQ Feats RMSE Max Interval Min Interval Avg Interval Max Epistemic Min Epistemic Avg Epistemic

N
A

CQR
28 18.40 ±1.14 53 28 40 - - -
51 17.41 ±0.16 50 30 40 - - -

MCD
28 10.76 ±0.05 - - - 192 14 88
51 10.88 ±0.29 - - - 187 15 83

E
U

CQR
28 16.50 ±0.06 54 27 37 - - -
51 15.93 ±1.23 56 29 36 - - -

MCD
28 10.52 ±0.17 - - - 67 4 22
51 10.10 ±0.13 - - - 79 4 27
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Table 1 summarizes model performance for June 2019. Referring to Question 2: Does the inclusion
of land-use information improve model performance, we see small improvements in RMSE score
for both the MC-Dropout and CQR models in Europe and CQR for North America, with no RMSE
improvement in the MC-Dropout model in North America (28-channel RMSE slightly lower than
51-channel). For CQR, the averaged interval length does not show any discernable difference between
the number of channels in the input space for North America or Europe. In North America, our
MC-Dropout method shows a decrease in the averaged and maximum epistemic uncertainty with
greater input features. In Europe, we see that increasing the number of input features increases the
epistemic uncertainty, which could be caused due to feature correlation resulting in model confusion.
Figure 2 depicts spatial maps of the averaged scores for the MC-Dropout and CQR methods in the
North America and Europe models for June 2019. In North America, we see consistency in higher
uncertainty scores between both methodologies on the Eastern coast of the continent. This pattern is
also seen in the larger RMSE scores in the same region that correspond to high ground truth bias.
Areas of high bias are hard to capture by the model in Europe, as referenced by the similarities in
high bias and high RMSE regions (South-East). Again, we see consistency in our UQ methods for
spatially identifying regions of high uncertainty in Europe, this time in the South-Eastern portion of
the continent. We find differences between the MC-Dropout and CQR-identified high relative UQ
regions across the North Western portion of Europe.

Figure 2: 51-channel MC-Dropout and CQR averaged model results for June 2019 Test set. Top:
North America. Bottom: Europe. From left to right: Ground truth (ppb), MC-Dropout RMSE
score (ppb), CQR average prediction interval length, MC-Dropout Epistemic Uncertainty. Colourbar
scaling varies per metric, with shared scale represented by a single colourbar, and two colourbars
for epistemic uncertainty corresponding to North America (top) and Europe (bottom) respectively.
Colourbars move from dark blue (lower values) to dark red (higher values).

We further investigate the ground stations which yielded the largest and smallest UQ scores and
plot their time series, shown in Figure 3. We selected the maximum UQ ground station candidate
at latitude, longitude (40.934, -73.125) which yielded the highest UQ score in 2/5 seeds for CQR.
We selected the minimum ground station candidate at latitude, longitude (35.327, -111.375) which
yielded the smallest UQ score in 1/5 seeds for CQR and 1/5 seeds for MCD. At our max location
(East coast), the ground truth signal is very noisy throughout the month of June, which our model
struggles to capture (centering on the mean), resulting in large prediction intervals and an average
(CQR model) RMSE of 14.36. At our minimum location (South-West), there is much less temporal
variation in the ground truth signal, which creates an easier target for our models to estimate with an
average (CQR model) RMSE of 7.18.

Spatial Extrapolation. Figure 4 shows a spatio-temporal comparison of the predictive uncertainty
for the 28-channel feature space for the MC-Dropout (top) and CQR (bottom) techniques for June 1st,
7th, 15th, 21st, and 30th, 2019, respectively. We see that there is consistency among the techniques
in identifying the East Coast of the United States as a high UQ region. The CQR model (bottom)
shows high UQ on both coasts of the continent which is not reflected in the MC-Dropout method.
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Figure 3: Time series of ground truth and CQR predictions for the ground station with, on average, the
largest and smallest prediction interval length, North America. Orange points are model prediction,
blue time series ground truth, light blue bands CQR prediction interval length. Bias in ppb.

There is a distinctive difference in the distribution of UQ throughout the month of June shown by
both methods; in MCD we see the UQ at the beginning of the month over a larger portion of the East
Coast than the end of the month, and with CQR a variability in the spatial scale and intensity of UQ
in the North-East of the continent.

Figure 4: MC-Dropout epistemic uncertainty (top) and Conformalized Quantile Regression interval
length (bottom) spatial extrapolation from model predictions using 28-channel feature space (left to
right) June 1, 7, 15, 21, and 30th, 2019.

5 Conclusion

We presented a first analysis of uncertainty quantification for surface ozone bias estimation using
quantile regression and Bayesian approximaton methods. Both techniques showed overlap in the
spatial patterns of high and low UQ regions of North America and Europe that match with regions of
high bias, but differed in their extrapolated results outside of ground station coverage, and exhibit
a temporal variation of UQ over the month of June, prompting future studies in this area. We find
that the inclusion of GEE data to our emulator improves epistemic uncertainty in North America,
but does not otherwise show significant improvement. In future work, we aim to further investigate
temporal UQ patterns across techniques, extending our work to a global scale, and include additional
UQ methods to create a benchmark of UQ for surfaze ozone bias modeling.
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