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Abstract

This paper presents a novel approach that enhances generative diffusion models
by enforcing compliance with specified constraints and physical principles. We re-
formulate the traditional sampling process used in these models into a constrained
optimization problem. This reformulation guides the generated data to adhere
closely to predefined boundaries, thereby ensuring the models comply with rele-
vant constraints. Our methodology is demonstrated across various applications,
including the generation of new materials with targeted morphometric character-
istics, the synthesis of physics-informed motion, optimized path planning, and the
creation of realistic human motion.

1 Introduction

Generative diffusion models excel at robustly synthesizing content from raw noise through a se-
quential denoising process [14, 24]. They have revolutionized high-fidelity creation of complex
data, and their applications have rapidly expanded beyond mere image synthesis, finding relevance
in areas such as engineering [29, 34], automation [3, 16], chemistry [1, 15], and medical analysis
[2, 6]. Although diffusion models excel at generating content that is coherent and aligns closely with
the original data distribution, their direct application in scenarios requiring stringent adherence to
predefined criteria poses significant challenges. Particularly the use of diffusion models in domains
where the generated data needs to not only resemble real-world examples but also rigorously comply
with established specifications and physical laws remains an open challenge. This paper addresses
these challenges and introduces Projected Diffusion Models (PDM), a novel approach that recast the
traditional sampling strategy in diffusion processes as a constrained-optimization problem. In this
work, the problem is solved by iteratively projecting the diffusion sampling process onto arbitrary
constraint sets, ensuring that the generated data adheres strictly to imposed constraints or physical
principles. This alignment is a significant advantage of PDM, yielding state-of-the-art FID scores
while maintaining strict compliance with the imposed constraints.

2 Related work and limitations

Model conditioning [13] aims to control generation by augmenting the diffusion process via a
conditioning variable c to transform the denoising process.These methods are effective in capturing
properties of physical design [29], positional awareness [3], and motion dynamics [32]. However,
while conditioning may be effective to influence the generation process, it lacks the rigor to ensure
adherence to specific constraints. This results in generated outputs that, despite being plausible, may
not be accurate or reliable. Figure 1 (red colors) illustrates this issue on a physics-informed motion
experiment (detailed in §4.3).
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Figure 1: Sampling steps failing
to converge to feasible solutions
in conditional models (red) while
minimizing the constraint diver-
gence to 0 under PDM (blue).

Post-processing correction. An alternative approach involves ap-
plying post-processing steps to correct deviations from desired con-
straints in the generated samples. This correction is typically imple-
mented in the last noise removal stage, sθ(x1, 1). Some approaches
have augmented this process to use optimization solvers to impose
constraints on synthesized samples [10, 19, 21]. However these ap-
proaches present two main limitations. First, their objective does
not align with optimizing the score function. This inherently po-
sitions the diffusion model’s role as ancillary, with the final syn-
thesized data often resulting in a significant divergence from the
learned (and original) data distributions, as we will demonstrate in
§4. Second, these methods are reliant on a limited and problem spe-
cific class of objectives and constraints, such as specific trajectory
“constraints” or shortest path objectives which can be integrated as
a post-processing step [10, 21].

3 Constrained generative diffusion

This section establishes a theoretical framework that connects the reverse diffusion process as an
optimization problem. This perspective facilitates the incorporation of constraints directly into the
process, resulting in the constrained optimization formulation presented in Equation (4).

The application of the reverse diffusion process of score-based models is characterized by iteratively
transforming the initial noisy samples xT back to a data sample x0 following the learned data
distribution q(x0). This transformation is achieved by iteratively updating the sample using the
estimated score function∇xt

log q(xt|x0), where q(xt|x0) is the data distribution at time t. At each
time step t, starting from x0

t , the process performs M iterations of Stochastic Gradient Langevin
Dynamics (SGLD) [30]:

xi+1
t = xi

t + γt∇xi
t
log q(xi

t|x0) +
√
2γtϵ, (1)

where ϵ is standard normal, γt > 0 is the step size, and ∇xi
t
log q(xi

t|x0) is approximated by the
learned score function sθ(xt, t).

3.1 Casting the reverse process as an optimization problem

First note that SGLD is derived from discretizing the continuous-time Langevin dynamics, which
are governed by the stochastic differential equation:

dX(t) = ∇ log q(X(t)) dt+
√
2 dB(t), (2)

where B(t) is standard Brownian motion. Under appropriate conditions, the stationary distribution
of this process is q(xt) [22], implying that samples generated by Langevin dynamics will, over time,
be distributed according to q(xt). In practice, these dynamics are simulated using a discrete-time
approximation, leading to the SGLD update in Equation (1). Therein the noise term

√
2γt ϵ

i
t allows

the algorithm to explore the probability landscape and avoid becoming trapped in local maxima.

Next notice that, as detailed in [30, 31], under some regularity conditions this iterative SGLD al-
gorithm converges toward a stationary point, bounded by d2

σ1/4λ∗ log(1/ϵ), where, σ2 represents the
variance schedule, λ∗ denotes the uniform spectral gap of the Langevin diffusion, and d is the dimen-
sionality of the problem. Thus, as the reverse diffusion process progresses towards T → 0, and the
variance schedule decreases, the stochastic component becomes negligible, and SGLD transitions
toward deterministic gradient ascent on log q(xt). In the limit of vanishing noise, the update rule
simplifies to:

xi+1
t = xi

t + γt∇x log q(xi
t|x0), (3)

which is standard gradient ascent aiming to maximize log q(xt). This allow us to view the reverse
diffusion process as an optimization problem minimizing the negative log-likelihood of the data
distribution q(xt|x0) at each time step t.

In traditional score-based models, at any point throughout the reverse process, xt is unconstrained.
When these samples are required to satisfy some constraints, the objective remains unchanged, but
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the solution to this optimization must fall within a feasible region C, and thus the optimization
problem formulation becomes:

minimize
xT ,...,x1

∑
t=T,...,1

− log q(xt|x0) (4a)

s.t.: xT , . . . ,x0 ∈ C. (4b)

Operationally, the negative log likelihood is minimized at each step of the reverse Markov chain, as
the process transitions from xT to x0. In this regard, and importantly, the objective of the PDM’s
reverse sampling process is aligned with that of traditional score-based diffusion models.

3.2 Constrained guidance through iterative projections

The score network sθ(xt, t) directly estimates the first-order derivatives of Equation (4a), providing
the necessary gradients for iterative gradient-based updates defined in Equation (1). In the presence
of constraints (4b), however, an alternative iterative method is necessary to guarantee feasibility.
PDM models a projected guidance approach to provide this constraint-aware optimization process.

First, we define the projection operator, PC, as a constrained optimization problem,

PC(x) = argmin
y∈C

||y − x||22, (5)

that finds the nearest feasible point to the input x. The cost of the projection ||y − x||22 represents
the distance between the closest feasible point and the original input.

To retain feasibility through an application of the projection operator after each update step, the
paper defines projected diffusion model sampling step as

xi+1
t = PC

(
xi
t + γt∇xi

t
log q(xt|x0) +

√
2γtϵ

)
, (6)

where C is the set of constraints and PC is a projection onto C. Hence, iteratively throughout the
Markov chain, a gradient step is taken to minimize the objective defined by Equation (4a) while en-
suring feasibility. Convergence is guaranteed for convex constraints sets [20] and empirical evidence
in §4 showcases the applicability of this methods to arbitrary constraint sets. Importantly, the projec-
tion operators can be warm-started during the repeated sampling step providing a piratical solution
even for hard non-convex constrained regions. The full sampling process is detailed in Algorithm 1.

By incorporating constraints throughout the sampling process, the interim learned distributions are
steered to comply with these specifications. This is empirically evident from the pattern in Figure 1
(blue curves): remarkably, the constraint violations decrease with each addition of estimated gradi-
ents and noise and approaches 0-violation as t nears zero. This trend not only minimizes the impact
but also reduces the optimality cost of projections applied in the later stages of the reverse pro-
cess. We provide theoretical rationale for the effectiveness of this approach in §D and conclude this
section by noting that this approach can be clearly distinguished from other methods which use a dif-
fusion model’s sampling process to generate starting points for a constrained optimization algorithm
[10, 21]. Instead, PDM leverages minimization of negative log likelihood as the primary objective
of the sampling algorithm akin to standard unconstrained sampling procedures. This strategy offers
a key advantage: the probability of generating a sample that conforms to the data distribution is

Algorithm 1: PDM

1 x0
T ∼ N (0, σT I)

2 for t = T to 1 do
3 γt ← σ2

t/2σ2
T

4 for i = 1 to M do
5 ϵ ∼ N (0, I); g ← sθ∗(xi−1

t , t)

6 xi
t = PC(xi−1

t + γtg +
√
2γtϵ)

7 x0
t−1 ← xM

t

8 return x0
0
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optimized directly, rather than an external objective, while simultaneously imposing verifiable con-
straints. In contrast, existing baselines often neglect the conformity to the data distribution, which,
as we will show in the next section, can lead to a deviation from the learned distribution and an
overemphasis on external objectives for solution generation, resulting in significant divergence from
the data distribution, reflected by high FID scores.

4 Experiments

We compare PDM against three methodologies, each employing state-of-the-art specialized meth-
ods tailored to the various applications tested:: (1) Conditional diffusion models (Cond) [13] are
the state-of-the-art methods for generative sampling subject to a series of specifications. While
conditional diffusion models offer a way to guide the generation process towards satisfying certain
constraints, they do not provide compliance guarantees. (2) To encourage constraints satisfaction,
we additionally compare to conditional models with a post-processing projection step (Cond+), em-
ulating the post-processing approaches of [10, 21] in various domains presented next. Finally, (3)
we use a score-based model identical to our implementation but with a single post-processing pro-
jection operation (Post+) performed at the last sampling step. The performance of these models are
evaluated by the feasibility and accuracy of the generated samples. Additional details and results
are provided in Sections E and F.

4.1 Constrained materials (low data regimes and constraint-violating distributions)

Ground P(%)
Generative Methods

PDM Cond Post+ Cond+

30

50
FID scores: 30.7±6.8 31.7±15.6 41.7±12.8 46.4±10.7

Figure 2: Microstructure visualization at varying of
the imposed porosity constraint amounts (P).

The first setting focuses on a real-world application
in material science, conducted as part of an experi-
ment to expedite the discovery of structure-property
linkages (please see §F for extensive additional de-
tails). From a sparse collection of microstructure
materials, we aim to generate new structures with
desired, previously unobserved porosity levels.

There are two key challenges in this setting: (1)
Data sparsity: A critical factor in this setting is the
cost of producing training data. Our dataset con-
sists of 64 × 64 image patches subsampled from a
3, 000 × 3, 000 pixel microscopic image, with pixel values scaled to [−1, 1]. These patches are up-
scaled to 256× 256 for training. (2) Out-of-distribution constraints: Constraints on the generated
material’s porosity are far from those observed in the original dataset.

Previous work has failed to impose verifiable constraints on desired properties [5, 11]. We imple-
ment a conditional diffusion model (Cond), following the state-of-the-art approach by [5], condition-
ing the sampling on porosity measurements. This state-of-the-art model struggles to adhere to the
constraints, producing infeasible solutions 90% of the time with a generous error tolerance of 10%
porosity (Figure 9). In contrast, PDM ensures both exact constraint satisfaction and identical image
quality to the conditional model. Additionally, we find that PDM outperforms Cond in generating
microstructures that resemble those in the ground truth data (see §E.1). These results are signif-
icant: the ability to precisely control morphological parameters in synthetic microstructures has
broad impact in material synthesis, addressing critical challenges in data collection and property
specification.

Figure 3: Constrained trajecotires synthetized by PDM
on two topographies (Tp1, left and Tp2, right).

PDM Cond (MPD) [3] Cond+

S Tp 1 100.0 ± 0.0 77.1 ± 29.2 77.1 ± 29.2
Tp 2 100.0 ± 0.0 53.3 ± 35.7 53.3 ± 35.7

PL
Tp 1 2.21 ± 0.26 2.08 ± 0.51 2.08 ± 0.51
Tp 2 2.05 ± 0.17 2.09 ± 0.31 2.09 ± 0.31

Figure 4: Constrained trajectories evalu-
ation on success percentage (S) for a sin-
gle run (higher the better, top) and path
length, PL, (lower the better, bottom).
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4.2 Constrained trajectories (nonconvex constraints)

The next experiment showcase the ability of PDM to handle nonconvex constraints. Path planning
is a classic optimization problem which is integral to finding smooth, collision-free paths in au-
tonomous systems. [3]. In this task, the diffusion model predicts a series of points, p0, p1, . . . , pN ,
where each pair of consecutive points represents a line segment. The problem presents obstacles at
inference time (shown in red on Figure 3), rendering a portion of the training data infeasible, and
thus testing the generalization of these methods. The performance is evaluated on two sets of maps
adapted from [3], shown in Figure 3. The main challenge in this setting is the non-convex nature
of the constraints.

Figure 3 visually demonstrates that PDM can identify a feasible path with just a single sample. This
capability marks a significant advance over existing state-of-the-art motion planning methods with
diffusion models, as it eliminates the necessity of multiple inference attempts, which greatly affects
the efficiency in generating feasible solutions. The experimental results (Figure 4) demonstrate the
effectiveness of PDM in handling complex, non-convex constraints in terms of success percentage
for single trajectories generated (top) and path length (bottom). Frequently both the Cond and Cond+

models fall short in finding feasible trajectories, taking shortcuts resulting in collisions. These results
are significant: they show that PDM can not only handle complex, non-convex constraints, but also
produce results that are on par with state-of-the-art models in solution optimality.

4.3 Physics-informed motion (ODEs and out-of-distribution constraints)

Finally, we demonstrate PDM in generating video frames adhering to physical principles. The goal
is to generate frames depicting an object accelerating due to gravity. The object’s position in a given
frame is governed by

pt = pt−1 +

(
vt +

(
0.5 ×

∂vt

∂t

))
, (7a) vt+1 =

∂pt

∂t
+

∂vt

∂t
(7b)

where p is the object position, v is the velocity, and t is the frame number. This positional informa-
tion can be directly integrated into the constraint set of PDM, with constraint violations quantified
by the pixel distance from their true position. In our experiment, the training data is based solely on
earth’s gravity and we test the model to simulate gravitational forces from the moon and other plan-
ets, in addition to earth. Thus there are two challenges in this setting (1) satifying ODEs describing
our physical principle and (2) generalize to out-of-distribution constraints.

Figure 11 (left) shows randomly selected generated samples, with ground-truth images provided for
reference. Samples generated by conditional diffusion models are not directly shown in the figure,
as the white object outline in the Cond+ frames shows where the Cond model originally positioned
the object. Post+ and Cond+ show inaccuracies in the conditional model’s object positioning, as
indicated by the white outline in the 3rd and 4th columns (and graphically in Figure 10). Notably,
this approach fails to produce any viable sample within a zero-tolerance error margin. In contrast,
PDM generates frames that exactly satisfy the positional constraints, with FID scores comparable
to those of Cond. Next, Figure 11 (right) shows the behavior of the models in settings where the
training data does not include any feasible data points, adjusting the governing equation (7) to reflect
the moon’s gravitational pull. PDM can handle complex governing equations (ODEs) and can
guarantee satisfaction of out-of-distribution constraints with no decrease in sample quality.

5 Conclusions

This paper was motivated by a significant challenge in the application of diffusion models in contexts
requiring strict adherence to constraints and physical principles. It presented Projected Diffusion
Models (PDM), an approach that recasts the score-based diffusion sampling process as a constrained
optimization process that can be solved via the application of repeated projections. Experiments in
domains ranging from physical-informed motion for video generation governed by ordinary dif-
ferentiable equations, trajectory optimization in motion planning, and adherence to morphometric
properties in generative material science processes illustrate the ability of PDM to generate content
of high-fidelity that also adheres to complex non-convex constraints as well as physical principles.

5



References
[1] Namrata Anand and Tudor Achim. Protein structure and sequence generation with equivariant

denoising diffusion probabilistic models. arXiv preprint arXiv:2205.15019, 2022.

[2] Chentao Cao, Zhuo-Xu Cui, Yue Wang, Shaonan Liu, Taijin Chen, Hairong Zheng, Dong
Liang, and Yanjie Zhu. High-frequency space diffusion model for accelerated mri. IEEE
Transactions on Medical Imaging, 2024.

[3] Joao Carvalho, An T Le, Mark Baierl, Dorothea Koert, and Jan Peters. Motion planning
diffusion: Learning and planning of robot motions with diffusion models. In 2023 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pages 1916–1923. IEEE,
2023.

[4] Joseph B. Choi, Phong C. H. Nguyen, Oishik Sen, H. S. Udaykumar, and Stephen Baek. Artifi-
cial intelligence approaches for energetic materials by design: State of the art, challenges, and
future directions. Propellants, Explosives, Pyrotechnics, 2023. doi: 10.1002/prep.202200276.
URL https://onlinelibrary.wiley.com/doi/full/10.1002/prep.202200276.

[5] Sehyun Chun, Sidhartha Roy, Yen Thi Nguyen, Joseph B Choi, HS Udaykumar, and Stephen S
Baek. Deep learning for synthetic microstructure generation in a materials-by-design frame-
work for heterogeneous energetic materials. Scientific reports, 10(1):13307, 2020.

[6] Hyungjin Chung and Jong Chul Ye. Score-based diffusion models for accelerated mri. Medical
image analysis, 80:102479, 2022.

[7] Nic Fishman, Leo Klarner, Valentin De Bortoli, Emile Mathieu, and Michael Hutchinson. Dif-
fusion models for constrained domains. arXiv preprint arXiv:2304.05364, 2023.

[8] Nic Fishman, Leo Klarner, Emile Mathieu, Michael Hutchinson, and Valentin De Bortoli.
Metropolis sampling for constrained diffusion models. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

[9] Thomas Frerix, Matthias Nießner, and Daniel Cremers. Homogeneous linear inequality con-
straints for neural network activations. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition Workshops, pages 748–749, 2020.

[10] Giorgio Giannone, Akash Srivastava, Ole Winther, and Faez Ahmed. Aligning optimiza-
tion trajectories with diffusion models for constrained design generation. arXiv preprint
arXiv:2305.18470, 2023.

[11] Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil
Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in
neural information processing systems, pages 2672–2680, 2014.

[12] Chuan Guo, Shihao Zou, Xinxin Zuo, Sen Wang, Wei Ji, Xingyu Li, and Li Cheng. Generating
diverse and natural 3d human motions from text. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5152–5161, 2022.

[13] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint
arXiv:2207.12598, 2022.

[14] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-
vances in neural information processing systems, 33:6840–6851, 2020.

[15] Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant
diffusion for molecule generation in 3d. In International conference on machine learning,
pages 8867–8887. PMLR, 2022.

[16] Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion
for flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

[17] Guan-Horng Liu, Tianrong Chen, Evangelos Theodorou, and Molei Tao. Mirror diffusion mod-
els for constrained and watermarked generation. Advances in Neural Information Processing
Systems, 36, 2024.

6

https://onlinelibrary.wiley.com/doi/full/10.1002/prep.202200276


[18] Aaron Lou and Stefano Ermon. Reflected diffusion models. In International Conference on
Machine Learning, pages 22675–22701. PMLR, 2023.

[19] François Mazé and Faez Ahmed. Diffusion models beat gans on topology optimization. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), Washington, DC, 2023.

[20] Neal Parikh and Stephen Boyd. Proximal algorithms. Foundations and Trends in Optimization,
1(3):127–239, 2014.

[21] Thomas Power, Rana Soltani-Zarrin, Soshi Iba, and Dmitry Berenson. Sampling constrained
trajectories using composable diffusion models. In IROS 2023 Workshop on Differentiable
Probabilistic Robotics: Emerging Perspectives on Robot Learning, 2023.

[22] Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of langevin distributions
and their discrete approximations. Bernoulli, 2(4):341–363, 1996.

[23] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kam-
yar Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photore-
alistic text-to-image diffusion models with deep language understanding. Advances in neural
information processing systems, 35:36479–36494, 2022.

[24] Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsuper-
vised learning using nonequilibrium thermodynamics. In International conference on machine
learning, pages 2256–2265. PMLR, 2015.

[25] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data dis-
tribution. Advances in neural information processing systems, 32, 2019.

[26] Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and
Ben Poole. Score-based generative modeling through stochastic differential equations. arXiv
preprint arXiv:2011.13456, 2020.

[27] Vikram Voleti, Alexia Jolicoeur-Martineau, and Chris Pal. Mcvd-masked conditional video
diffusion for prediction, generation, and interpolation. Advances in Neural Information Pro-
cessing Systems, 35:23371–23385, 2022.

[28] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming. Mathematical programming, 106:
25–57, 2006.

[29] Tsun-Hsuan Wang, Juntian Zheng, Pingchuan Ma, Yilun Du, Byungchul Kim, Andrew Spiel-
berg, Joshua Tenenbaum, Chuang Gan, and Daniela Rus. Diffusebot: Breeding soft robots
with physics-augmented generative diffusion models. arXiv preprint arXiv:2311.17053, 2023.

[30] Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
681–688. Citeseer, 2011.

[31] Pan Xu, Jinghui Chen, Difan Zou, and Quanquan Gu. Global convergence of langevin dynam-
ics based algorithms for nonconvex optimization. Advances in Neural Information Processing
Systems, 31, 2018.

[32] Ye Yuan, Jiaming Song, Umar Iqbal, Arash Vahdat, and Jan Kautz. Physdiff: Physics-guided
human motion diffusion model. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 16010–16021, 2023.

[33] Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and
Ziwei Liu. Motiondiffuse: Text-driven human motion generation with diffusion model, 2022.

[34] Ziyuan Zhong, Davis Rempe, Danfei Xu, Yuxiao Chen, Sushant Veer, Tong Che, Baishakhi
Ray, and Marco Pavone. Guided conditional diffusion for controllable traffic simulation. In
2023 IEEE International Conference on Robotics and Automation (ICRA), pages 3560–3566.
IEEE, 2023.

7



A Broader impacts

The development of Projected Diffusion Models (PDM) may significantly enhance the application
of diffusion models in fields requiring strict adherence to specific constraints and physical princi-
ples. The proposed method enables the generation of high-fidelity content that not only resembles
real-world data but also complies with complex constraints, including non-convex and physical-
based specifications. PDM’s ability to handle diverse and challenging constraints in scientific and
engineering domains, particularly in low data environments, may potentially lead to accelerating
innovation and discovery in various fields.

B Expanded related work

Diffusion models with soft constraint conditioning. Variations of conditional diffusion models
[13] serve as useful tools for controlling task specific outputs from generative models. These meth-
ods have demonstrated the capacity capture properties of physical design [29], positional awareness
[3], and motion dynamics [32] through augmentation of these models. The properties imposed in
these architectures can be viewed as soft constraints, with stochastic model outputs violating these
loosely imposed boundaries.

Post-processing optimization. In settings where hard constraints are needed to provide meaningful
samples, diffusion model outputs have been used as starting points for a constrained optimization al-
gorithm. This has been explored in non-convex settings, where the starting point plays an important
role in whether the optimization solver will converge to a feasible solution [21]. Other approaches
have augmented the diffusion model training objective to encourage the sampling process to emulate
an optimization algorithm, framing the post-processing steps as an extension of the model [10, 19].
However, an existing challenge in these approaches is the reliance on an easily expressible objective,
making these approaches effective in a limited set of problems (such as the constrained trajectory
experiment) while not applicable for the majority of generative tasks.

Hard constraints for generative models. Frerix et al. proposed an approach for implementing hard
constraints on the outputs of autoencoders. This was achieved through scaling the generated outputs
in such a way that feasibility was enforced, but the approach is to limited simple linear constraints.
[17] proposed an approach to imposing constraints using “mirror mappings” with applicability ex-
clusively to common, convex constraint sets. Due to the complexity of the constraints imposed in
this paper, neither of these methods were applicable to the constraint sets explored in any of the
experiments. Alternatively, work by Fishman et al. [2023, 2024] broadens the classes of constraints
that can be represented but fails to demonstrate the applicability of their approach to a empirical set-
tings similar to ours, utilizing an MLP architecture for trivial predictive tasks with constraints sets
that can be represented by convex polytopes. We contrast such approaches to our work, noting that
this prior work is limited to constraint sets that can be approximated by simple neighborhoods, such
as an L2-ball, simplex, or polytope, whereas PDM can handle constraint sets of arbitrary complexity.

Sampling process augmentation. Motivated by the compounding of numerical error throughout
the reverse diffusion process, prior work has proposed inference time operations to bound the pixel
values of an image dynamically while sampling [18, 23]. Proposed methodologies have either ap-
plied reflections or simple clipping operations during the sampling process, preventing the generated
image from significantly deviating from the [0,255] pixel space. Such approaches augment the sam-
pling process in a way that mirrors our work, but these methods are solely applicable to mitigating
sample drift and do not intersect our work in general constraint satisfaction.

C Preliminaries: Diffusion models

Diffusion-based generative models [14, 24] expand a data distribution, whose samples are de-
noted x0, through a Markov chain parameterization {xt}Tt=1, defining a Gaussian diffusion process
p(x0) =

∫
p(xT )

∏T
t=1 p(xt−1|xt)dx1:T .

In the forward process, the data is incrementally perturbed towards a Gaussian distribution. This
process is represented by the transition kernel q(xt|xt−1) = N (xt;

√
1− βtxt−1, βtI) for some

0 < βt < 1, where the β-schedule {βt}Tt=1 is chosen so that the final distribution p(xT ) is nearly
Gaussian. The diffusion time t allows an analytical expression for variable xt represented by
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χt(x0, ϵ) =
√
αtx0 +

√
1− αtϵ, where ϵ ∼ N (0, I) is a noise term, and αt =

∏t
i=1 (1− βi).

This process is used to train a neural network ϵθ(xt, t), called the denoiser, which implicitly approx-
imates the underlying data distribution by learning to remove noise added throughout the forward
process.
The training objective minimizes the error between the actual noise ϵ and the predicted noise
ϵθ(χt(x0, ϵ), t) via the loss function:

min
θ

E
t∼[1,T ], p(x0),N (ϵ;0,I)

[
∥ϵ− ϵθ(χt(x0, ϵ), t)∥2

]
. (8)

The reverse process uses the trained denoiser, ϵθ(xt, t), to convert random noise p(xT ) iteratively
into realistic data from distribution p(x0). Practically, ϵθ predicts a single step in the denoising
process that can be used during sampling to reverse the diffusion process by approximating the
transition p(xt−1|xt) at each step t.

Score-based models [25, 26], while also operating on the principle of gradually adding and re-
moving noise, focus on directly modeling the gradient (score) of the log probability of the data
distribution at various noise levels. The score function ∇xt log p(xt) identifies the direction and
magnitude of the greatest increase in data density at each noise level. The training aims to optimize
a neural network sθ(xt, t) to approximate this score function, minimizing the difference between
the estimated and true scores of the perturbed data:

min
θ

E
t∼[1,T ],p(x0),q(xt|x0)

(1− αt)
[
∥sθ(xt, t)−∇xt log q(xt|x0)∥2

]
, (9)

where q(xt|x0) = N (xt;
√
αtx0, (1− αt)I) defines a distribution of perturbed data xt, generated

from the training data, which becomes increasingly noisy as t approach T . This paper considers
score-based models.

D Effectiveness of PDM: A theoretical justification

To shed light on the PDM ability to guide the generated samples to the constrained distribution,
this section provides a theoretically grounded motivation for the use of iterative projections. The
analysis assumes that the feasible region C is a convex set. We start by defining the update step.
Definition D.1. The operator U defines a single update step for the sampling process as,

U(xi
t) = xi

t + γtsθ(x
i
t, t) +

√
2γtϵ. (10)

The next result establishes a convergence criteria on the proximity to the optimum, where for each
time step t there exists a minimum value of i = Ī such that,

∃Ī s.t.
∥∥∥(xĪ

t + γt∇xĪ
t
log q(xĪ

t |x0))
∥∥∥
2
≤ ∥ρt∥2 (11)

where ρt is the closest point to the global optimum that can be reached via a single gradient step
from any point in C.
Theorem D.2. Let PC be a projection onto C, xi

t be the sample at time step t and iteration i, and
‘Error’ be the cost of the projection (5). Assume ∇xt

log p(xt) is convex. For any i ≥ Ī ,

E
[
Error(U(xi

t),C)
]
≥ E

[
Error(U(PC(x

i
t)),C)

]
(12)

The proof for Theorem D.2 is reported in §J. This result suggests that PDM’s projection steps en-
sure the resulting samples adhere more closely to the constraints as compared to samples generated
through traditional, unprojected methods. Together with the next results, it will allow us to show that
PDM samples converge to the point of maximum likelihood that also satisfy the imposed constraints.

The theoretical insight provided by Theorem D.2 provides an explanation for the observed discrep-
ancy between the constraint violations induced by the conditional model and PDM, as in Figure
1.
Corollary D.3. For arbitrary small ξ > 0, there exist t and i ≥ Ī such that:

Error(U(PC(x
i
t)),C) ≤ ξ.

9



The above result uses the fact that the step size γt is strictly decreasing and converges to zero, given
sufficiently large T , and that the size of each update step U decreases with γt. As the step size
shrinks, the gradients and noise reduce in size. Hence, Error(U(PC(x

i
t)) approaches zero with t, as

illustrated in Figure 1 (right). This diminishing error implies that the projections gradually steer the
sample into the feasible subdistribution of p(x0), effectively aligning with the specified constraints.

Feasibility guarantees. PDM provides feasibility guarantees when solving convex constraints.
This assurance is integral in sensitive settings, such as material analysis (Section 4.1), plausible
motion synthesis (Section ??), and physics-based simulations (Section 4.3), where strict adherence
to the constraint set is necessary.

Corollary D.4. PDM provides feasibility guarantees for convex constraint sets, for arbitrary density
functions ∇xt log p(xt).

E Additional results

E.1 Constrained materials morphometric parameter distributions

When analyzing both real and synthetic materials, heuristic-guided metrics are often employed to
extract information about microstrucutres present in the material. When analyzing the quality of
synthetic samples, the extracted data can then be used to assess how well the crystals and voids in
the microstructure adhere to the training data, providing an additional qualitative metrics for analysis.
To augment the metrics displayed within the body of the paper, we include here the distribution of
three metrics describing these microstructures, mirroring those used by Chun et al..
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Figure 5: Distributions of the morphometric parameters, comparing the ground truth to PDM and Cond models
using heuristic-based analysis.

We observe that the constraint imposition present in PDM improves the general adherence of the
results to the ground truth microstructures. This suggests that the Cond model tends to generate to
certain microstructures at a frequency that is not reflected in the training data. By imposing various
porosity constraints, PDM is able to generate a more representative set of microstructures in the
sampling process.

Figure 6: PDM (left, FID: 0.71) and conditional (Cond) (right, FID: 0.63) generation.

E.2 3D human motion

Here, we focus on dynamic motion generation adhering to strict physical principles using the chal-
lenging HumanML3D dataset [12]. This benchmark employs three-dimensional figures across a
fourth dimension of time to simulate motion. Thus, the main challenges here are generating 3D
figures (1) including a temporal component, while (2) ensuring they neither penetrate the floor
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nor float in the air, as proposed by [32]. Previous studies have never achieved zero-tolerance results
[32].

First, we remark that previous approaches, such as [32], relies on a computationally demanding
physics simulators to transform diffusion model predictions into “physically-plausible” actions, us-
ing a motion imitation policy trained via proximal policy optimization. In contrast, and remarkably,
PDM does not require such a simulator and inherently satisfies the non-penetration and non-floating
constraints without external assistance, showing zero violations. For comparison, the best outcomes
reported in [32] ranged from 0.918 to 0.998 for penetration violations and 2.601 to 3.173 for float-
ing violations (see §E.2 for more details). Additionally, to more accurately assess the abilities of a
diffusion model in the absences of physics simulator, we evaluate a conditional model with the same
architecture as the PDM model, adapted from MotionDiffuse [33]. Results visualized in Figure 6
demonstrate that PDM achieves outputs on par with state-of-the-art FID scores.

We highlight that unlike the approach proposed by [32], our approach guarantees the generated
motion does not violate the penetrate and float constraints. The results are tabulated in Table 1 (left)
and report the violations in terms of measured distance the figure is either below (penetrate) or above
(float) the floor. For comparison, we include the projection schedules utilized by PhysDiff which
report the best results to show that even in these cases the model exhibits error.

Method FID Penetrate Float
PhysDiff [32] (Start 3, End 1) 0.51 0.918 3.173
PhysDiff [32] (End 4, Space 1) 0.43 0.998 2.601

PDM 0.71 0.00 0.00
Table 1: PDM performance compared to (best) PhysDiff results on HumanML3D.

The implementation described by [32] applies a physics simulator at scheduled intervals
during the sampling process to map the diffusion models prediction to a “physically-
plausible action that imitates data points of the training distribution. This simulator dramat-
ically alters the diffusion models outputs utilizing a learned motion imitation policy, which
has been trained to match the ground truth samples using proximal policy optimization.
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Figure 7: Visualization of the decreasing
upper bound on error introduced in a sin-
gle sampling step for PDM, as opposed to
the strictly increasing upper bound of condi-
tional (Cond) models.

In this setting the diffusion model provides a starting
point for the physics simulator and is not directly respon-
sible for the final results of these predictions. Direct paral-
lels can be drawn between this approach and other meth-
ods which solely task the diffusion model with initializ-
ing an external model [10, 21]. Additionally, while the
authors characterize this mapping as a projection, it is crit-
ical to note that this is a projection onto the learned distri-
bution of the simulator and not a projection onto a feasible
set, explaining the remaining constraint violations in the
outputs.

E.3 Convergence of PDM

As shown in Figure 1, the PDM sampling process con-
verges to a feasible subdistribution, a behavior that is gen-
erally not present in standard conditional models. Corol-
lary D.3 provides insight into this behavior as it outlines the decreasing upper bound on ‘Error’ that
can be introduced in a single sampling step. To further illustrate this behavior, the decreasing upper
bound can be illustrated in Figure 7.

F Experimental settings

In the following section, further details are provided as to the implementations of the experimental
settings used in this paper.
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Figure 8: Porosity constrained microstructure visualization at varying of the imposed porosity constraint
amounts (expanded from Figure 2).

F.1 Constrained materials

Microstructures are pivotal in determining material properties. Current practice relies on physics-
based simulations conducted upon imaged microstructures to quantify intricate structure-property
linkages [4]. However, acquiring real material microstructure images is both costly and time-
consuming, lacking control over attributes like porosity, crystal sizes, and volume fraction, thus ne-
cessitating “cut-and-try” experiments. Hence, the capability to generate realistic synthetic material
microstructures with controlled morphological parameters can significantly expedite the discovery
of structure-property linkages.
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Figure 9: Conditional diffusion
model (Cond): Frequency of
porosity constraint satisfaction
(y-axis) within an error tolerance
(x-axis) over 100 runs.

Previous work has shown that conditional generative adversarial
networks (GAN) [11] can be used for this end [5], but these studies
have been unable to impose verifiable constraints on the satisfaction
of these desired properties. To provide a conditional baseline, we
implement a conditional DDPM modeled after the conditional GAN
used by Chun et al. with porosity measurements used to condition
the sampling.

Projections. The porosity of an image is represented by the num-
ber of pixels in the image which are classified as damaged regions
of the microstructure. Provided that the image pixel intensities are
scaled to [-1, 1], a threshold is set at zero, with pixel intensities be-
low this threshold being classified as damage regions. To project,
we implement a top-k algorithm that leaves the lowest and highest intensity pixels unchanged, while

12



adjusting the pixels nearest to the threshold such that the total number of pixels below the threshold
precisely satisfies the constraint.

Conditioning. The conditional baseline is conditioned on the porosity values of the training sam-
ples. The implementation of this model is as described by Ho and Salimans.

Original training data. We include samples from the original training data to visually illustrate
how closely our results perform compared to the real images. As the specific porosities we tested on
are not adhered to in the dataset, we illustrate this here as opposed to in the body of the text.

We observe that only the Conditional model and PDM synthesize images that visually adhere to the
distribution, while post-processing methods do not provide adequate results for this complex setting.

F.2 3D human motion

Projections. The penetration and floatation constraints can be handled by ensuring that the lowest
point on the z-axis is equal to the floor height. Additionally, to control the realism of the generated
figures, we impose equality constraints on the size of various body parts, including the lengths of the
torso and appendages. These constraints can be implemented directly through projection operators.

Conditioning. The model is directly conditioned on text captions from the HumanML3D dataset.
The implementation is as described in [33].

F.3 Constrained trajectories

To circumvent the challenge of guaranteeing collision-free paths, previous methods have relied on
sampling large batches of trajectories, selecting a feasible solution if available [3]. We use the
state-of-the-art Motion Planning Diffusion [3] as a conditional model baseline for this experiment
and the associated datasets to train each of the models. For the Cond+ model, we emulate the
approach proposed by [21], using the conditional diffusion model to generate initial points for an
optimization solver. In this setting, the projection operator used by PDM is non-convex, and the
implementation uses an interior point method [28]. While the feasible region is non-convex, our
approach never report unfeasible solutions as the distance from the learned distribution decreases,
unlike other methods. In contrast, using the same method for a single post-processing projection
(Post+) does not enhance the feasibility of solutions compared to the unconstrained conditional
model (Cond), highlighting the limitations of these single corrections in managing local infeasibili-
ties. These observations are consistent with the analysis of Figure 1.

Projections. For this experiment, we represent constraints such that the predicted path avoids in-
tersecting the obstacles present in the topography. These are parameterized to a non-convex interior
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Figure 10: Conditional diffusion
model (Cond): Frequency of con-
straint satisfaction (y-axis) given
an error tolerance (x-axis) over
100 runs.

point method solver. For circular obstacles, this can be represented
by a minimum distance requirement, the circle radius, imposed on
the nearest point to the center falling on a line between pn and pn+1.
These constraints are imposed for all line segments. We adapt a
similar approach for non-circular obstacles by composing these of
multiple circular constraints, hence, avoiding over-constraining the
problem. More customized constraints could be implement to better
represent the feasible region, likely resulting in shorter path lengths,
but these were not explored for this paper.

Conditioning. The positioning of the obstacles in the topography
are passed into the model as a vector when conditioning the model
for sampling. Further details can be found the work presented by
Carvalho et al., from which this baseline was directly adapted.

F.4 Physics-informed motion

The dataset is generated with object starting points sampled uni-
formly in the interval [0, 63]. For each data point, six frames are
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Figure 11: Sequential stages of the physics-informed models for in-distribution (Earth) and out-of-distribution
(Moon) constraint imposition.

included with the position changing as defined in Equation 7 and the initial velocity v0 = 0. Pixel
values are scaled to [-1, 1]. The diffusion models are trained on 1000 points with a 90/10 train/test
split.

Projections. Projecting onto positional constraints requires a two-step process. First, the current
position of the object is identified and all the pixels that make up the object are set to the highest
pixel intensity (white), removing the object from the original position. The set of pixel indices
representing the original object structure are stored for the subsequent step. Next, the object is moved
to the correct position, as computed by the constraints, as each pixel from the original structure is
placed onto the center point of the true position. Hence, when the frame is feasible prior to the
projection, the image is returned unchanged, which is consistent with the definition of a projection.

Conditioning. For this setting, the conditional video diffusion model takes two ground truth
frames as inputs, from which it infers the trajectory of the object and the starting position. The
model architecture is otherwise as specified by Voleti et al..

G PDM for score-based generative modeling through stochastic differential
equations

G.1 Algorithms

While the majority of our analysis focused on the developing these techniques to the sampling archi-
tecture proposed for Noise Conditioned Score Networks [25], this approach can directly be adapted
to the diffusion model variant Score-Based Generative Modeling with Stochastic Differential Equa-
tions proposed by Song et al. Although our observations suggested that optimizing across a con-
tinuum of distributions resulted in less stability in diverse experimental settings, we find that this
method is still effective in producing high-quality constrained samples in others.

We included an updated version of Algorithm 1 adapted to these architectures.

14



t Earth (in distribution) Moon (out of distribution)
1 2 3 4 1 2 3 4

G
ro

un
d

PD
M

(S
D

E
)

Figure 12: Sequential stages of the physics-informed models for in-distribution (Earth) and out-of-distribution
(Moon) constraint imposition via Score-Based Generative Modeling with SDEs.

Algorithm 2: PDM Corrector Algorithm

1 x0
N ∼ N (0, σ2

maxI)
2 for t←− T to 1 do
3 for i←− 1 to M do
4 ϵ ∼ N (0, I)
5 g←− sθ*(x

i−1
t , σt)

6 γ ←− 2(r||ϵ||2/||g||2)2
7 xi

t ←− PC(x
i−1
t + γg +

√
2γϵ)

8 x0
t−1 ←− xM

t

9 return x0
0

We note that a primary discrepancy between this algorithm and the one presented in Section 3.2
is the difference in γ. As the step size is not strictly decreasing, the guidance effect provided by
PDM is impacted as Corollary D.3 does not hold for this approach. Hence, we do not focus on
this architecture for our primary analysis, instead providing supplementary results in the subsequent
section.

G.2 Results

We provide additional results using the Score-Based Generative Modeling with Stochastic Differen-
tial Equations. This model produced highly performative results for the Physics-informed Motion
experiment, with visualisations included in Figure 12. This model averages an impressive inception
score of 24.2 on this experiment, slightly outperforming the PDM implementation for Noise Condi-
tioned Score Networks. Furthermore, it is equally capable in generalizing to constraints that were
not present in the training distribution.

H Computational costs

To compare the computational costs of sampling with PDM to our baselines, we record the execution
times for the reverse process of a single sample. The implementations of PDM have not been opti-
mized for runtime, and represent an upper bound. All sampling is run on two NVIDIA A100 GPUs.
All computations are conducted on these GPUs with the exception of the interior point method
projection used in the 3D Human motion experiment and the Constrained Trajectories experiment
which runs on two CPU cores.

We implement projections at all time steps in this analysis, although practically this is can be opti-
mized to reduce the total number of projections as described in the subsequent section. Additionally,
we set M = 100 and T = 10 for each experiment. The increase in computational cost present in
PDM is directly dependant on the tractability of the projections and the size of M .
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Constrained Materials 3D Human Motion Constrained Trajectories Physics-informed Motion

PDM 26.89 682.40∗ 383.40∗ 48.85
Post+ 26.01 – – 27.58
Cond 18.51 13.79 0.56 35.30
Cond+ 18.54 – 106.41 36.63

Table 2: Average sampling run-time in seconds.

The computational cost of the projections is largely problem dependant, and we conjecture that these
times could be improved by implementing more efficient projections. For example, the projection
for Constrained Trajectories could be dramatically improved by implementing this method on the
GPUs instead of CPUs (∗). However, these improvements are beyond the scope of this paper. Our
projection implementations are further described in §F.

Additionally, the number of iterations for each t can often be decreased below M = 100 or the
projection frequency can be adjusted (as has been done for in this section for the CPU implemented
projections), offering additional speed-up.
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Figure 13: Iterative projections using model trained with variational lower bound objective.

I Variational lower bound training objective

As defined in Equation 2, PDM uses a score-matching objective to learn to the gradients of the log
probability of the data distribution. This understanding allows the sampling process to be framed
in a light that is consistent to optimization theory, allowing equivalences to be drawn between the
proposed sampling procedure and projected gradient descent.

Other DDPM and DDIM implementation utilize a variation lower bound objective, which is a
tractable approach to minimizing the negative log likelihood on the network’s noise predictions.
While this approach was inspired by the score-matching objective, we empirically demonstrate that
iterative projections perform much worse in our tested settings than models optimized using this
training objective, producing clearly inferior solutions in the Physics-informed experiments and fail-
ing to produce viable solutions in the material science domain explored.

This approach (visualized in Figure 13) resulted in an FID score of 113.8 ± 4.9 on the Physics-
informed Motion experiment and 388.2 ± 13.0 on the Constrained Materials experiment, much
higher than those produced using the score-matching objective, adopted in our paper. We hold that
this is because the approach proposed in our paper is more theoretically sound when framed in terms
of a gradient-based sampling process.
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J Missing proofs

Proof of Theorem D.2

Proof. By optimization theory of convergence in a convex setting, provided an arbitrarily large
number of update steps M , xM

t will reach the global minimum. Hence, this justifies the existence of
Ī as at some iteration as i −→∞,

∥∥∥xi
t + γt∇xi

t
log q(xi

t|x0)
∥∥∥
2
≤ ∥ρt∥2 will hold for every iteration

thereafter.

Consider that a gradient step is taken without the addition of noise, and i ≥ Ī . Provided this, there
are two possible cases.

Case 1: Assume xi
t+γt∇xi

t
log q(xi

t|x0) is closer to the optimum than ρt. Then, xi
t is infeasible.

This claim is true by the definition of ρt, as xi
t+γt∇xi

t
log q(xi

t|x0) is closer to µ than is achievable
from the nearest feasible point to µ. Hence, xi

t must be infeasible.

Furthermore, the additional gradient step produces a point that is closer to the optimum than possible
by a single update step from the feasible region. Hence it holds that

Error(xi
t + γt∇xi

t
log q(xi

t|x0)) > Error(PC(x
i
t) + γt∇PC(xi

t)
log q(PC(x

i
t)|x0)) (13)

as the distance from the feasible region to the projected point will be at most the distance to ρt. As
this point is closer to the global optimum than ρt, the cost of projecting xi

t + γt∇xi
t
log q(xi

t|x0) is
greater than that of any point that begins in the feasible region.

Case 2: Assume xi
t + γt∇xi

t
log q(xi

t|x0) is equally close to the optimum as ρt. In this case,
there are two possibilities; either (1) xi

t is the closest point in C to µ or (2) xi
t is infeasible.

If the former is true, xi
t = PC(x

i
t), implying

Error(xi
t + γt∇xi

t
log q(xi

t|x0)) = Error(PC(x
i
t) + γt∇PC(xi

t)
log q(PC(x

i
t)|x0)) (14)

Next, consider that the latter is true. If xi
t is not the closest point in C to the global minimum, then it

must be an equally close point to µ that falls outside the feasible region. Now, a subsequent gradient
step of xi

t will be the same length as a gradient step from the closest feasible point to µ, by our
assumption.

Since the feasible region and the objective function are convex, this forms a triangle inequality, such
that the cost of this projection is greater than the size of the gradient step. Thus, by this inequality,
Equation 13 applies.

Finally, for both cases we must consider the addition of stochastic noise. As this noise is sampled
from the Gaussian with a mean of zero, we synthesize this update step as the expectation over,

E
[
Error(xi

t + γt∇xi
t
log q(xi

t|x0) +
√
2γtϵ)

]
≥ E

[
Error(PC(x

i
t) + γt∇PC(xi

t)
log q(PC(x

i
t)|x0) +

√
2γtϵ)

]
(15)

or equivalently as represented in Equation 12.
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