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Abstract

Score-based generative models have gained popularity as expressive, data-driven
priors for complex, high-dimensional inverse problems. However, in many scien-
tific applications, it is often difficult or even impossible to acquire samples from the
true distribution to train these models, in which case a surrogate, e.g. a simulator,
is often used to produce training samples, meaning that the learned prior could be
misspecified. This, in turn, can bias the inferred posteriors, which limits the poten-
tial applicability of these models in real-world scenarios. In this work, we propose
addressing this issue by iteratively training new priors with posterior samples from
different sets of observations. We showcase the potential of this method on the
problem of background image reconstruction in strong gravitational lensing. We
show that posterior sampling becomes less biased after several updates, and the
learned distribution is closer to the true prior.

1 Introduction

In the era of precision science, Bayesian inference has become a cornerstone of modern statistical
data analysis. It provides a mathematical framework for inferring the probability distribution of latent
parameters of interest, the posterior, in the presence of noisy observations. In this paradigm, existing
knowledge is encoded in a prior distribution, which can be updated with new, noisy information
through the likelihood function, to produce updated belief over the parameters of a problem [e.g. 1].
In cases where there are no prior observational constraints for a given system, the only information
regarding the system is the belief that it is a random sample from an underlying population. In those
cases, a possible approach is to use expressive data-driven population-level priors [2], in which a
sample of existing data representative of the population is used to learn their distribution (i.e., by
using them to train a generative model). However, it is often the case that the true population-level
distribution cannot be sampled directly to obtain training examples.

A possible alternative is to use simulators to obtain the needed training data. In astrophysics, high-
quality simulators are often available and make this a promising avenue. For example, in cosmology,
simulations of the Universe [e.g. 3, 4, 5] can provide samples of fields and objects of interest [e.g.
6]. Another alternative is to construct training datasets from existing data sources that exhibit some
structural similarity to the physical phenomena of interest [e.g. 7, 8, 9]. However, all these options
bear the risk of a distribution shift between the learned prior and the true population-level distribution.

In this work, we propose an iterative method to update an initially biased data-driven prior which
approximates the process of hierarchical Bayesian inference of the population-level prior over multiple
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iterations of observations. We provide empirical results in high-dimensional settings, showing that
this method can forget artifacts present in the initial prior but absent from the true data-generating
distribution. We showcase our method on the problem of learning idealized brightness structures from
noisy observations in the inverse problem setting of strong gravitational lensing source reconstruction.
We use score-based models as priors, as they have emerged as state-of-the-art generative models for
images in recent years [10, 11, 12, 13, 14, 15]. They have enjoyed a wide range of applicability in
inverse problem settings due in part to the flexibility of the stochastic differential equation (SDE)
formalism [16] that underpins the framework [17]. In astronomy, they have been successfully
applied to, among others, interferometric imaging [e.g. 7, 9, 18, 19], deconvolution [e.g. 20, 8], mass
modelling [21], cosmological fields or cosmological parameters recovery [e.g. 22, 23, 24, 25, 26, 27],
and strong gravitational lensing source reconstruction [28, 29].

2 Methods

2.1 Strong gravitational lensing source reconstruction

Strong gravitational lensing occurs when a massive object curves space in such a way that the light
emitted by a distant background source, for example, a galaxy, is deflected, causing the image we see
from the source to be distorted and multiply imaged. Given a noisy lensed observation, reconstructing
the source galaxy and the mass distribution in the lens is an important scientific problem, which can
act as a probe to understand the nature of dark matter [e.g. 30, 31], the early formation of stars [e.g.
32], active galactic nuclei [e.g. 33], the expansion rate of the universe [e.g. 34], and other problems.

In the limit of a thin lens, and assuming that the mass distribution in the foreground lens is known,
strong gravitational lensing of a background source into a distorted observation is a linear transforma-
tion. Under this regime, inferring the background source is a linear inverse problem, characterized by
the equation y = Ax+ η, where x ∈ Rn are the parameters of interest, y ∈ Rm is the observation
and η ∈ Rm is a vector of additive noise, which we consider to be Gaussian η ∼ N (0,Ση = σηI).
The observation and parameters of interests are related by a constant matrix A ∈ Rm×n. In a
Bayesian framework, the goal is to sample from the posterior distribution, p(x | y). In the next
section, we explore this inference process with a data-driven expressive prior.

2.2 Score-based models as priors for inverse problems

Score-based models (SBM) are a class of generative models that aims to learn the score function
of the data distribution convolved with noise, ∇xt

log pt(xt) = ∇xt log
∫
p(x)p(xt | x)dx. The

noising process is generally characterized by a Gaussian perturbation kernel, p(xt | x) indexed by
the time parameter, t, of an SDE [16]. A neural network, sθ(x, t), typically a U-net [35], is trained to
approximate ∇x log pt(x) using samples x ∈ Rn from data D∼p(x) by minimising the denoising
score-matching objective [36, 37]. Having access to an approximation of the score function allows
one to create a generative model by solving the reverse-time SDE [38] associated with the noising
process used during training

dx = (f(x, t)− g2(t)∇x log pt(x))dt+ g(t)dw̄ , (1)

where f is the drift, g is an homogeneous diffusion coefficient associated with the noising process
and w̄ is a reverse-time Wiener process.

This generative process can also be used for posterior inference given new data by replacing the prior
score function in the reverse-time SDE (1) with the posterior score function ∇x log p(x | y), which
is obtained using Bayes’ theorem. However, the likelihood score is intractable, as it involves an
expectation over backward trajectories of the reverse-time SDE [see e.g. 7]. For a Gaussian likelihood,
we can construct an analytical estimate of its score using the convolved likelihood approximation
[21, 28]

pt(y | x) ≈ N (µ(t)y | Ax, µ2(t)Ση + σ2(t)AAT ) , (2)

where Ση is the covariance associated with the additive noise distribution η ∼ N (0,Ση). With this
machinery, any SBM trained on some dataset of parameters of interest can be used as an approximate
posterior sampler without retraining or conditioning the neural network on the observations [39].
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Figure 1: Improvement in strong gravitational lensing source reconstruction with galaxy sources under
Algorithm 1 after 10 updates, highlighting the adaptation from a biased initial prior to better alignment
with the target distribution. The top row shows noisy observations y with observational noise of
ση = 3. The second row displays posterior samples from the initial prior pθ0 , characterized by
significant bias. The third row presents samples after the final update pθ10 , demonstrating substantial
improvements in matching the true sources x⋆, which were sampled from pθ⋆ .

2.3 Updating the prior with observations

We aim to study hierarchical inference in the context of moderately high-dimensional inference
inverse problems using SBM as expressive priors. Assuming an initial SBM prior trained on a
potentially corrupted dataset {x(0)

i }, our goal is to update the population-level parameters θ — the
weights of the prior SBM network — given only a set of noisy and partial observations {yi}Ni=1.

We introduce a method inspired by traditional generalized expectation maximization methods [e.g.
40, 41, 42, 43, 44], which consists of an iterative procedure that leverages the posterior sampling
algorithm outlined in Section 2.2 to acquire increasingly plausible samples from the set of observations
{y(α)

i }Ni=1. For each update, a set of posterior samples is aggregated from each observation to train a
new prior distribution, encoded by the generative process of a SBM. The algorithm is summarized in
Algorithm 1.

We can show that the updated prior will have larger log-evidence than the previous iteration (see
Appendix F), and that, in the large data limit N → ∞, there exists a stationary representation for the
prior distribution, pθ̂(x), which has log-evidence equal to the true distribution θ⋆ (see Appendix E).
We show empirically in Section 3 that the procedure does converge to a prior close to the true
underlying population distribution for the settings we explored.

Algorithm 1 Updating the prior with observations

Input: Initial prior pθ0(x), observations {yi}M×N
i=1 , training procedure A, number of posterior

samples per observation K, number of updates M .
for α = 1 to M do

Select N observations {y(α)
i }Ni=1 = {yi}αNi=(α−1)N

for i = 1 to N do
Get K posterior samples Di,α

posterior = {x(α)
i,j }Kj=1, x

(α)
i,j ∼ pθα−1

(x | y(α)
i )

end for
Train new prior with posterior samples pθα = A(

⋃N
i=1 D

i,α
posterior)

end for
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Figure 2: Evaluation of prior improvement for the galaxy experiment. Left: The χ2
PQM statistic

comparing the target distribution pθ⋆ with the proposal prior pθi at each iteration. Right: Mean
log-likelihood of the residuals y −Ax from 10 240 pairs (y,x ∼ pθα(x | y)).

3 Experiments and results

For our experiments, we intentionally create a misspecified initial prior pθ0 compared to the true
distribution pθ⋆ . We gather two datasets of galaxy images (3×64×64 resolution) of different classes:
simulated observations of blue spiral galaxies, taken from a subset of the SKIRT TNG dataset [6],
and real observations of red elliptical galaxies, obtained from the DESI Legacy Imaging Surveys
[45] DR10. The datasets are described in Appendix D. We define the true distribution pθ⋆ , used to
simulate observations, to be what an SBM learned when trained on the spiral dataset, and the initial
distribution pθ0 is an SBM trained on the elliptical dataset. This choice is motivated by the fact that
initially, only noisy telescope observations of local, evolved red galaxies would be available to train
an initial prior, but we want to demonstrate that the proposed method can discover new features.

We perform two experiments with 10 updates, 10 240 observations per update, 1 posterior sample
per observation, and with relatively low noise levels, ση = 0.5, 1. To simulate the forward strong
gravitational lensing model, we use the Caustics python package [46]. We also assume that the
forward model is the same for all observations and is known. In Figure 1, we show a selection of
10 observations and their posterior samples for the first and last iterations. This figure demonstrates
how the structure of generated posterior samples evolves as a function of the update, increasing in
complexity from elliptical shapes to showcasing rings and satellites in the last update. The samples
obtained using the initial prior are strongly biased toward elliptical galaxies and differ from the
ground truths x⋆ in color, flux, and morphology. Thus, important morphological information about
the data is learned and encoded in the updated SBM which only had access to noisy observations.

To further test the improvement of the prior, in Figure 2 (right), we compute the log-likelihood of the
residuals as a function of the update index and compute the mean and variance of the log-likelihood.
The ideal value corresponds to the entropy of the noise model H(N (0,Ση)). This metric informs us
about the information left in the data to be extracted by the posterior sampling algorithm. We observe
that the mean converges to the ideal scenario while the variance reduces accordingly.

y θ0 θ1 θ2 θ4 x? y θ0 θ1 θ2 θ4 x?

Figure 3: Sequences showcasing the model’s ability to accurately reconstruct the digit 4 from noisy
observations in posterior samples after updating the prior with Algorithm 1, despite 4 not being
included in the initial prior. The evolution of posterior samples x ∼ pθα(x | y) is shown for each
update.

Finally, we also compute the PQMass metric between each updated prior pθα(x) and pθ⋆(x). PQMass
is a sample-based metric to assess the quality of generative models [47] which is based on partitions
of the space by Voronoi cells to estimate the probability that both samples come from the same
distribution using a χ2

PQM using counts in those cells. We use nr = 100 regions and estimate a mean
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and variance by using 5 independent sets of samples from both distributions, with 2 048 samples in
each set. The results are reported in the left panel of Figure 2. We observed that the value of χ2

PQM
improves as a function of the update index, and depends on the noise level of the observations. The
improvement in these metrics and posterior samples showcase the potential of this method.

We also performed experiments using MNIST digits [48] as pixelated background sources. Here,
we explore mode mismatch, which we define as the situation where the initial prior and the true
underlying population-level distribution do not share the same modes. As an example, we train the
initial prior pθ0(x) on a subset of MNIST with the digits 1 and 4 removed, while the true population
distribution, pθ⋆(x) is constructed with the digits 1 and 6 missing. We perform M = 4 iterations
using our algorithm.

As observed in Figure 3, when we use the initial prior pθ0(x) with an observation where the source is
a number 4 (not seen during training), the digit 9 is obtained from posterior samples. We hypothesize
this to be due to the similarity between the digits 4 and 9. In the first few columns, the posterior
samples are biased towards reconstructing the digit 9 because 4 is missing from this prior. Crucially,
our algorithm can recover the correct shape of the digit 4 after a few updates, even though this digit
was never seen during the initial training of the prior SBM. We further analyze digit proportion in
prior samples at each iteration in Appendix A.

4 Limitations

One of the main limitations of our current framework is that it requires a substantial amount of data
and compute resources. The iterative retraining of SBM from scratch alone can be an important com-
putational burden. Since the improvement per update slows down drastically after a few updates, an
argument can be made to keep the number of iterations low generally. Another possible improvement
is to use fine-tuning techniques, such as using LoRA weights [49], instead of training from scratch.
Regarding data requirements, rather than performing a single update per observation set, it may be
worth exploring multiple updates per set or even using a single dataset for all the iterations. This
approach could approximate maximum-likelihood fitting for the given dataset, which introduces the
risk of overfitting. Finally, it is important to mention that in this work, we assumed that the physical
forward model A, determined by the lensing configuration, is known. However, this is typically
not the case with real data. Jointly sampling the lensing parameters and the pixelated source in the
presence of real (potentially non-Gaussian) noise would be necessary to apply this approach to real
data.

5 Conclusion

In conclusion, we have introduced an algorithm that addresses the misspecification of a prior SBM
by updating it using only partial and noisy observations, allowing us to learn a distribution over
high-dimensional spaces accurately. We have demonstrated empirically that this method can learn
new features in linear inverse problem settings. Such a method is of high value considering the
volume of partially corrupted observations currently available and upcoming in large surveys of the
sky like the Euclid space telescope [50] and the Vera Rubin Observatory [51]. Extracting information
from these surveys and encoding it in SBM neural networks for future inference tasks is an important
subject for the development of computational imaging techniques in astronomy.
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A Details of MNIST experiment

For the experiments with MNIST, in each update, N = 60 000 observations are generated and K = 1
posterior samples are generated for each of them to train the next SBM prior. To systematically
identify the digits, we train a CNN classifier on MNIST. This allows us to track the proportion of each
mode in the prior distributions as a function of the prior update. These results are shown in Figure 4.
We observe that the digit 6 is dropped after the first iteration. This is expected since our algorithm
only uses posterior samples for its update, and no observations were consistent with the number 6 in
the first round given the chosen inverse problem and noise level. On the other hand, learning to infer
the digit 4 requires multiple iterations. Interestingly, the proportion of 9’s correspondingly increases
after the first iteration (as the digits 4 and 9 are morphologically very similar, and therefore true 4s
get reconstructed as 9s by the initially misspecified prior) and gradually decreases as the proportion
stabilizes closer to the true data-generating distribution. All other numbers keep almost the same
proportion.
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Figure 4: Learning and forgetting dynamics across updates using Algorithm 1 in the MNIST
experiment. The plot shows the classification of 2 048 prior samples x ∼ pθα(x) at each update,
with each panel corresponding to a digit category. pθ0(x) was trained excluding digits 4 and 1, while
pθ⋆(x) excluded 6 and 1. The red dashed line represents the proportion from the target distribution.

B Lensing forward model

In our experiments, we employ a Singular Isothermal Ellipsoid (SIE) lens model within a Flat-ΛCDM
cosmology. The background source is represented by a grid of pixels. For simplicity, we fix the
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ellipticity of the lens model to q = 0.5, and the position angle to ϕ = π/5. For MNIST we set
θE = 0.5′′ and the source pixel scale to 0.03′′, while for galaxies, these constants are set to 0.8′′ and
0.04′′, respectively. The other parameters are set to the Caustics default values.

With these parameters defined, we can obtain the transformation matrix A by computing the Jacobian
matrix of the simulator. Finally, we add Gaussian noise to the simulations.

C Models architecture and training

All the models used for the galaxy experiments share the same architecture and training hyperpa-
rameters. The same applies to the MNIST models independently. In this appendix, we specify the
necessary details to reproduce the experiments. For the MNIST experiments, we use the Variance
Exploding SDE [16] and train the SBM model accordingly. We use σmin = 10−5, and σmax = 100.
For the experiments with galaxies, we use the Variance Preserving SDE, with βmin = 10−2, and
βmax = 20. In both cases, we use the NCSN++ architecture [16] via the score-models1 package.

For the galaxy experiment, the architecture parameters within the score-models package are:

"channels": 3,
"nf": 64,
"ch_mult": [1, 2, 2, 2],
"num_res_blocks": 2

And for MNIST:

"channels": 1,
"nf": 64,
"ch_mult": [2, 2, 2],
"num_res_blocks": 3,

We also use the score-models package to train the models. We use the Adam optimizer [52]. For
the galaxy experiments we have lr = 1e−4, batch size of 256, and ema_decay = 0.999, and for
the MNIST experiments we have lr = 5e−5, batch size of 256, and ema_decay = 0.99. For all
experiments, we train for approximately 2.5 × 105 optimization steps. All hyperparameters not
specified are left to the score-models default values.

We found these configurations for both sets of experiments by trying out 5 different parameter sets.
In terms of compute resources, we perform training and inference (both prior and posterior sampling)
in A100 GPUs. Each SBM model training and sampling routine was carried out on a single A100
GPU. The MNIST models required 14 hours of training (wall-time), with 16Gb of VRAM allocated.
The galaxy models required 20 hours of training (wall-time), with 32Gb of VRAM allocated, while
posterior/prior sampling of a set of 1 024 samples require 2 hours (wall-time) and 32Gb of VRAM.
The posterior sampling procedure is explained in Appendix G.

In total, for all the experiments, we trained 12 SBM for MNIST, 30 SBM for galaxies, and performed
700 rounds of prior (to simulate observations) and posterior sampling (to create the training dataset
for the next SBM prior), with 1 024 samples per set.

D Galaxy datasets

The spiral dataset is a synthetic dataset used as the true distribution for our experiments. It is taken
from the SKIRT TNG dataset [6], made by a large public collection of images covering bands from
0.3-5 microns made by applying dust radiative transfer post-processing [53] to galaxies from the
TNG cosmological magneto-hydrodynamical simulations2 [54]. This synthetic data is simulated
for the grz filters of the Hyper Suprime-Cam Subaru Strategic Program [55] and assigned to the
(B,G,R) color channels, respectively, and serves as our ground truth sample since it contains no
observational noise and can be taken at high resolution. We take 10 000 data points from this dataset,
convert to flux in µJy sr−1 units, and downsample to 64× 64 pixel images to train an SBM.

1github.com/AlexandreAdam/score_models
2www.tng-project.org
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Spiral Elliptical

Figure 5: Random samples from the two galaxy datasets used in this work, highlighting the distinction
between both. The spiral galaxy dataset, comes from a subset of the SKIRT TNG dataset [6]. The
elliptical galaxy dataset is sourced from the DESI Legacy Imaging Surveys [45]

The elliptical dataset is used as the initial prior for our experiments. It is strongly out of distribution
compared to the spiral dataset as it includes some corruption effects from real observation (e.g.
observational noise and psf blurring) and is overall void of high-frequency features, unlike spiral
galaxies. Moreover, the color channels are markedly different between the two sets (see Figure 5). We
collected 10 459 galaxy images from the DESI Legacy Imaging Surveys [45] DR10, selected using
the SDSS-IV [56] DR17 [57] database via Astroquery [58] to construct this dataset. We selected
these galaxies based on the elliptical class from GalaxyZoo [59], using a threshold of at least 10 votes
and a probability of at least 70%. We also filter postage stamps with thresholds for total magnitude
(5 ≤ modelMag_r ≤ 22), radius (2′ ≤ r ≤ 20′), and flux criteria. Here we also select the grz bands
for this dataset and assign them to the (B,G,R) color channels. The images are sampled at 64× 64
pixel resolution, and the galaxy sample has been chosen to fit well in this size at the native resolution
for the DESI observations.

Random samples from both datasets are shown in Figure 5.

E Stationary distribution

ηi θ⋆xi

yi A

i = 1, . . . , N

Figure 6: Graphical model of the inference problem. The true prior distribution is parametrized by
the population-level parameters θ⋆. Our goal is to learn an estimate θ̂ ≈ θ⋆. In this work, we have
access to the noise distribution that generates ηi, the forward model A and a set of N observations
{yi}Ni=1.

We illustrate the data-generation process for the inference problem in Figure 6, where pθ⋆ is the
true population-level distribution describing the underlying prior distribution we aim to approximate.
At each iteration of Algorithm 1, we wish to train a SBM with parameters θα+1 that maximizes
the log-likelihood of posterior samples obtained for a set of observations using the previous prior
pθα(x). That is, we want to find θα+1 such that the updated prior given by sθα+1

(x, t) approximates
Ey∼p(y)pθα(x | y) in the large data limit. This is equivalent to finding the set of θα+1 minimizing
the KL divergence [60]:

θα+1 = argmin
θ∈Θ

KL
(∫

dy p(y)pθα(x | y)
∥∥∥ pθ(x))

= argmax
θ∈Θ

∫
dydx p(y)pθα(x | y) log pθ(x) = argmax

θ∈Θ
E

y∼p(y)
x∼pθα (x|y)

[log pθ(x)] (3)

Definition E.1. Given a prior pθα(x) and a set of observations S = {y(α)
i }Ni=1, we define the

next prior distribution pθα+1
(x) as the distribution encoded by the generative process of the SBM

sθα+1
(x, t) trained by minimizing the denoising objective with training set D given by:

D = {xi,j |xi,j ∼ pθα(x | yj), ∀i ∈ [1,K], ∀yj ∈ S} (4)
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Under Definition E.1, in the large data limit, the next prior pθα+1(x) is the expected posterior under
prior pθα(x) with observations from y ∼ p(y):

pθα+1
(x) = Ey∼p(y)[pθα(x | y)] (5)

Samples from the observation distribution can be obtained by sampling the underlying population
distribution x ∼ pθ⋆(x) and using the forward process to calculate y = Ax+ η. The distribution of
these samples is given by:

p(y) =

∫
p(y | x)pθ⋆(x) dx (6)

We observe that there is no change in the update if pθα(x) has already converged to the stationary
distribution, pθ̂(x), which has marginal likelihood, or evidence, equal to the underlying population
distribution, pθ̂(y) = p(y):

pθα+1
(x) = Ey∼p(y)

[
p(y | x)pθα(x)

pθα(y)

]
= pθα(x)

∫
p(y | x) p(y)

pθα(y)
dy = pθα(x) (7)

Because if pθα(x) has converged to the stationary distribution pθ̂(x), then

pθα(y) =

∫
dx p(y | x)pθα(x) =

∫
dx p(y | x)pθ̂(x) = pθ̂(y) . (8)

However, in practice, we have finite samples, and we only approximate Ey∼pθ⋆ (y)[pθα(x | y)] at each
iteration after training. For convergence to a distribution, we would need to have pθα(y) ≈ pθ⋆(y).
We also note that the prior distribution found after iterating does not necessarily converge to the
underlying prior pθ∗(x), but it is such that it has equal marginal likelihood, and therefore equally
explains the observed data, making it a plausible hyper distribution.

F Detailed proof of ascent property

There exist a long literature on the convergence properties of the generalized expectation maximization
algorithm [41, 61, 43]. We wish to show that the procedure outlined in Algorithm 1 incrementally
increases the log-likelihood of observations, that is, leads to successive priors models that allow us to
incrementally increase the expected log-evidence of data for our fixed physical and noise models.
More specifically, ∫

dyp(y) log pθα+1
(y) ≥

∫
dyp(y) log pθα(y) , (9)

where pθα(y) =
∫
dxp(y | x)pθα(x) for every α, and p(y) is the true observation distribution under

the true prior. We have:∫
dyp(y)

[
log pθα+1(y)− log pθα(y)

]
(10)

=

∫
dyp(y) log

[
pθα+1

(y)

pθα(y)

]
(11)

=

∫
dyp(y) log

[∫
dxpθα+1

(x)p(y|x)
pθα(y)

]
(12)

=

∫
dyp(y) log

[∫
dxpθα(x|y)

pθα+1
(x)

pθα(x)

]
(13)

≥
∫ ∫

dyp(y)dxpθα(x | y)
[
log pθα+1(x)− log pθα(x)

]
(14)

Here, to go from line (12) to line (13), we have multiplied by 1 = pα(x|y)/pα(x|y) inside the
x integral and used that the likelihood p(y|x) is the same for all α’s, and have used that line (14)
follows from Jensen’s inequality. Now, since the way we define θα+1 in our iterative update is by
finding the values of θ that maximize the first terms in Eqn. (14) (see Appendix E), and that, at worse,
we could have θα+1 = θα, we conclude that Eqn. (9) follows.

19



G Posterior sampling SDE solver and coverage test

Across all experiments, the posterior sampling procedure F is a Predictor-Corrector SDE solver,
with a different number of steps. When doing posterior sampling, we use the convolved likelihood
approximation. Since approximations are involved, and the problem is discretized with a certain
number of steps, it is important to test the correctness of F .

We choose to use TARP [62], a sample-based method to estimate coverage probabilities of generative
posterior estimators. It has been shown that passing this test is a necessary and sufficient condition
for the accuracy of F . We perform several tests for experiments with both MNIST and galaxies.
These tests can be conducted either using the test set of the dataset used to train the true distribution
pθ⋆ , or with samples from the true distribution since it is defined to be the target.

For the experiment with galaxies, when using a Predictor-Corrector solver with 1 024 steps (one
corrector step per predictor step) as F , posterior sampling is exact, as shown in Figure 7. This
uses the correct prior (SBM) and observational noise of ση = 1. However, increasing the level of
observational noise to ση = 3 makes the procedure biased, indicating the limit of the approximations
used for F . Furthermore, when using the test set instead of samples from the prior, again with ση = 3,
we obtain more biased results. This could be because the SBM is not in distribution with the test set,
possibly due to model capacity or imperfect learning.

When using F with a misspecified prior, the test shows an important bias, as it is sensitive to the
correct prior. Nonetheless, we use F as is for the updates. To run TARP, we simulate 256 observations
and obtain 256 posterior samples from each one.
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Figure 7: Coverage test for the posterior sampling procedure F using TARP [62] for the galaxy
experiment. Credibility levels are plotted against expected coverage, comparing results from mock
observations created with samples from the Score-Based Model (SBM) prior under different noise
levels: ση = 1 (blue) and ση = 3 (orange), along with mock observations from the test set with
noise ση = 3 (green). The dashed line represents the ideal case where expected coverage matches
credibility levels perfectly. Posterior sampling is exact when we have the correct prior (here enforced
by creating mock observations with samples from the prior), and with a specific noise level. Results
vary with different noise levels or a misspecified prior, indicating F’s sensitivity to these factors.

20


	Introduction
	Methods
	Strong gravitational lensing source reconstruction
	Score-based models as priors for inverse problems
	Updating the prior with observations

	Experiments and results
	Limitations
	Conclusion
	Details of MNIST experiment
	Lensing forward model
	Models architecture and training
	Galaxy datasets
	Stationary distribution
	Detailed proof of ascent property
	Posterior sampling SDE solver and coverage test

