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Abstract

In Laser Powder Bed Fusion (LPBF), the applied laser energy produces high ther-
mal gradients that lead to unacceptable final part distortion. Accurate distortion
prediction is essential for optimizing the 3D printing process and manufacturing a
part that meets geometric accuracy requirements. This study introduces data-driven
parameterized reduced-order models (ROMs) to predict distortion in LPBF across
various machine process settings. We propose a ROM framework that combines
Proper Orthogonal Decomposition (POD) with Gaussian Process Regression (GPR)
and compare its performance against a deep-learning based parameterized graph
convolutional autoencoder (GCA). The POD-GPR model demonstrates high ac-
curacy, predicting distortions within ±0.001mm, and delivers a computational
speed-up of approximately 1800x.

1 Introduction

LPBF is a popular metal additive manufacturing technique that has gained significant attention in
recent years due to its ability to fabricate complex geometries with high precision. In LPBF, a thin
layer of metal powder is deposited on a build platform, and a high-energy laser selectively melts and
fuses the powder particles together to form a solid layer. This process is repeated layer by layer, with
each 2D layer fusing to the previous one, ultimately constructing fully dense 3D components [9].

The repeated melting and solidification cycles in LPBF lead to significant thermal gradients, resulting
in notable distortion in the as-built part. This distortion can compromise the dimensional accuracy and
structural integrity of the final component, which is a critical requirement in many applications [3].
To address this challenge, currently, the additive manufacturing community relies on a trial-and-error
method, which involves conducting numerous experiments or simulations that are time-consuming
and expensive. The approach is a distortion compensation technique, which involves pre-distorting
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the part design in such a way that upon printing, the final built shape matches the intended geometry
[19]. The problem is predicting quickly the pre-distorted part geometry is not easy.

The amount of distortion for a given geometry depends on various machine settings, such as scan
speed, laser power, and dwell time [10]. Accurately predicting the distortion based on these param-
eters is crucial for effective distortion compensation and process optimization [15]. High-fidelity
finite element models offer a cost-effective alternative, enabling repeated trials without the need
to physically build the parts [5]. However, developing accurate physics-based models for LPBF
distortion is a complex task due to the non-linear dependence of distortion on the process and complex
part geometries: one pre-distortion solution that fits all problems does not exist [20].

This study aims to develop parameterized data-driven reduced-order models (ROMs) for accurately
predicting distortion in the LPBF process under various machine settings [7, 4, 2]. Specifically, it
employs a combination of POD and Gaussian Process Regression to create a ROM, which is then
compared with a parameterized graph convolutional autoencoder for distortion prediction. The POD-
GPR ROM achieves a distortion prediction accuracy within ±0.001,mm, and offers a computational
speed-up over the high fidelity model of nearly 1800 times. This significant improvement highlights
the model’s potential for enabling rapid and precise distortion predictions, which is critical for
optimizing LPBF processes. The ability to efficiently predict distortion not only reduces the reliance
on costly and time-consuming experimental trials but also enhances the overall process control,
making this approach highly valuable for industrial applications [14].

2 Methods

2.1 LPBF simulation data

In this study, we analyze data generated from Laser Powder Bed Fusion (LPBF) simulations conducted
using ANSYS® Additive Suite. The dataset is parameterized based on the dwell time (dt), which
represents the time interval required for the laser or heat source to revisit a specific location to deposit
a subsequent material layer [6]. The impact of this interlayer dwell time becomes more pronounced
as structures grow in size and complexity, significantly affecting the thermal history and geometric
distortion outcomes. Specifically, we performed simulations on a cylindrical geometry with dwell
times dt ∈ [20, 80] s, sampled at intervals of 5 s. The computational mesh used in these simulations
comprised Nh = 77, 151 nodes, and each simulation covered 34 layers of metal deposition, yielding
Nt = 34 time steps per simulation. On average, each simulation required approximately 2 hours
of computation on 112 cores of an Intel(R) Xeon(R) CLX-8276L processor. From this extensive
dataset, we selected Nµ samples for training, with the remaining samples designated for validation
and testing. Let µ(i) =

(
dt(i)

)
represent the i-th parameter in the training set. The primary quantity

of interest is the final distortion field, u. We denote the snapshot vector of distortion data at time-step
n for parameter µ(i) as u(i)

n ∈ RNh , and the corresponding data matrix for all nodes and time steps as
U(i) =

[
u
(i)
0 , . . . ,u

(i)
Nt

]
∈ RNh×Nt . By aggregating all these matrices, we form a third-order tensor

U =
[
U(1), . . . ,U(Nµ)

]
∈ RNµ×Nh×Nt , which constitutes the training dataset utilized in this work.

A visual representation of this dataset is provided in Figure 1.
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Figure 1: Schematic of dataset generation. LPBF simulations were generated for parameter dwell
time. Distortion data was extracted for each simulation and arranged into a training snapshot matrix.
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2.2 POD-GPR

POD-GPR is a parameterized, data-driven reduced order modeling method which consists of two
main features: 1) POD [1] to learn a linear spatial compression of data to a latent space; 2) GPR [17]
to map the POD coefficients of final distortion layer to a given parameter value.

POD is a dimensionality reduction technique widely used in the analysis of complex systems to
identify dominant patterns or modes. Given a set of snapshots U = [U1,U2, . . . ,UNt ]−Uref ∈
RNh×Nt , where each snapshot Ui ∈ RNh represents the state of the system at a particular time or
parameter setting, the goal of POD is to find a set of orthonormal basis vectors {ϕk}rk=1 that capture
the most energetic features of the data. This is achieved by solving the eigenvalue problem associated
with the covariance matrix C = UUT ∈ RNh×Nh . The eigenvectors corresponding to the largest
eigenvalues provide the POD modes, which minimize the reconstruction error in a least-squares sense.
Mathematically, this can be expressed as:

min
ϕk

Nt∑
i=1

∥∥∥∥∥Ui −
r∑

k=1

⟨Ui, ϕk⟩ϕk

∥∥∥∥∥
2

,

where ⟨Ui, ϕk⟩ denotes the projection of Ui onto the k-th POD mode. The reduced representation
of the data is then given by the projection coefficients ai = [⟨Ui, ϕ1⟩, . . . , ⟨Ui, ϕr⟩]T , enabling
efficient analysis and computation in a lower-dimensional subspace. We select the first r modes for
which the total energy is greater than 99.99%. The energy stored in the first r modes is given by:

Er =

∑r
j=1 σ

2
j∑N

j=1 σ
2
j

,

where σ is the eigenvalue.

GPR is a powerful non-parametric method for modeling complex functions, particularly in cases
where uncertainty quantification is important. In this work, we employ GPR to learn r independent
Gaussian process regressions, each mapping the final time POD coefficients to their corresponding
parameter µ. Let a(µ) = [a1(µ), . . . , ar(µ)]

T denote the vector of POD coefficients at the final time
for the parameter µ. For each coefficient aj(µ), where j ∈ {1, . . . , r}, we model it as a Gaussian
process:

aj(µ) ∼ GP(mj(µ), kj(µ,µ
′)),

where mj(µ) is the mean function and kj(µ,µ
′) is the covariance function (kernel) associated with

the j-th POD coefficient. In our approach, we use a constant mean function for mj(µ) and a radial
basis function (RBF) kernel for kj(µ,µ′), which is defined as:

kj(µ,µ
′) = σ2

j exp

(
−∥µ− µ′∥2

2ℓ2j

)
,

where σ2
j is the signal variance, and ℓj is the length-scale parameter.

Given training data D = {(µ(i),a(i))}Nµ

i=1, the posterior distribution for each aj(µ
∗) at a new test

point µ∗ can be computed as:

aj(µ
∗) | D,µ∗ ∼ N (m̂j(µ

∗), k̂j(µ
∗,µ∗)),

where m̂j(µ
∗) and k̂j(µ

∗,µ∗) are the posterior mean and variance, respectively. This approach
allows us to efficiently predict the POD coefficients for unseen parameters µ, capturing the underlying
uncertainty in the process.

3



Φ(𝑈)

𝜇 Θ(𝜇)

Ψ(𝑈)

[Graph-convolution + FCN]

[FCN]

𝑈

Latent Space

[Graph-convolution + FCN]

Training:

Testing:

Θ(𝜇) 𝑈 Ψ(𝑈)𝜇𝑡𝑒𝑠𝑡

Figure 2: Illustration of parameterized graph convolutional autoencoder architecture

2.3 Parameterized graph-convolution autoencoder

We employ a graph convolutional autoencoder (GCA) [16, 11, 8] to map a graph-based representation
of the distortion field into a latent space. The encoder, E , applies graph convolution layers to extract
features and reduce dimensionality, resulting in a latent representation Û = E(X; Θe), where X
denotes the input graph and Θe the encoder parameters. Simultaneously, we train a fully connected
neural network (FCNN), F , that maps the dwell time dt, to this same latent space, Û(p) = F(dt; Θf ),
with Θf representing the network parameters. This setup ensures that the latent space encodes both
the geometrical and operational characteristics influencing the distortion. The decoder, D, then
reconstructs the distortion field from the latent space, X̂ = D(Û; Θd), aiming to minimize the
reconstruction loss Lrec = ∥X − X̂∥2. Figure 2 depicts the architecture of parameterized graph
convolutional autoencoder.

The overall training objective also includes a parameter consistency loss Lparam = ∥Û− Û(p)∥2,
ensuring that the FCNN’s output aligns with the encoder’s latent space. The mathematical formulation
of our training objective combines these losses, optimizing Θe, Θf , and Θd through:

min
Θe,Θf ,Θd

Lrec(X, X̂) + λLparam(Û, Û(p)),

where λ is a regularization parameter balancing the two loss components. For the present work, we
have used λ = 0.5.

3 Results

In this study, the training dataset consisted of dwell times dt = {20, 25, 35, 40, 50, 55, 65, 70, 80}
seconds. The present study aims to test the performance of data-driven models in a scarce data regime.
Validation was conducted using dwell times dt = {30, 60} seconds, while testing was performed on
dt = {45, 75} seconds. In particular, for the POD-GPR model, there is no separate validation set;
both validation and test sets are combined into a single test set. The current selection of validation
and test sets focuses on evaluating the performance of these models within the interpolation range of
the parameters. In future work, we plan to extend the parameter space to include the extrapolation
range, enabling a more comprehensive assessment of the models’ generalization capabilities.

Our implementation of POD successfully preserved 99.99% of the variance with 129 modes. Subse-
quently, 129 independent GPRs were trained. The performance of the first four POD coefficients
corresponding to the test dwell times is visually represented in the Figure 3.
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Figure 3: Graphical representation of the first four POD coefficients of final layer predicted by the
GPR model for various dwell times in the test set (dt = {30, 45, 60, 75} seconds) along with the 95%
confidence interval.

The industry standard for accuracy in additive manufacturing processes is within ±0.1 mm. Our
POD-GPR model significantly exceeds this requirement, achieving an accuracy of ±0.001 mm for the
maximum displacement value, showcasing an excellent agreement with the finite element simulations.
Notably, the runtime for the POD-GPR is approximately 4 seconds, providing a computational
speed-up of about 1800 times compared to traditional finite-element methods.

The parameterized GCA was trained within a denoising autoencoder framework, employing early
stopping with a patience of 50 epochs and cosine annealing warm restarts [12] for learning rate
adjustment to optimize training and mitigate overfitting. The AdamW optimizer [13] was used for
parameter updates. Despite setting the latent space dimension to 12 for a detailed yet compact data
representation, the GCA showed tendencies of overfitting, attributed to the limited dataset size of only
nine training points. This limited dataset impaired the model’s generalization capabilities, particularly
noticeable in test performance for dwell times of 45s and 75s. Figure 4 contrasts displacement
predictions from the POD-GPR and GCA models against finite element simulations. The figure and
results underscore the POD-GPR model’s superior performance, highlighting its greater accuracy and
effectiveness in distortion prediction for additive manufacturing.

(a) (b)

Figure 4: (a) Maximum displacement predictions from the POD-GPR model compared with ground
truth from finite element analysis, (b) Predictions from the parameterized GCA model

4 Conclusion

This study highlights the POD-GPR model’s exceptional accuracy and computational efficiency in
distortion prediction, achieving accuracies within ±0.001 mm and a 1800-fold speed improvement,
demonstrating its suitability for engineering applications. While the parameterized GCA model faces
challenges in generalizing due to a limited dataset, its versatility in adapting to different geometries
indicates significant potential for broader uses. Future work will focus on enhancing the GCA model
with an enlarged dataset and exploring advanced non-linear methods such as weak-LaSDI [18].
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