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Abstract

The discovery and classification of periodic orbits is fundamental to understanding
chaotic dynamical systems, but existing algorithms typically search for individual
orbits without considering underlying structure and connectivity. We consider
the loss landscape of variational loops in phase space, devising a Hessian-based
approach to numerically continue along periodic orbit families. Our method offers
precise initializations of oscillations around unstable fixed points, an integrator-free
variational continuation method, and efficient detection of orbit family intersections
and subharmonic bifurcations. Leveraging autograd for computations, we present
full continuations of periodic double pendulum oscillations from fixed points,
demonstrate examples of orbit family intersections and bifurcations, and interpret
branching orbits as combinations of perturbations in the periodic orbit structure.

1 Introduction

In chaotic dynamical systems, periodic orbits play a key role in studying long-term evolution. Periodic
orbits are inputs to many statistical methods from classical chaos theory, such as cycle expansions
(1, 5, 6, 4), and are also interpretable for humans due to the inherit simplicity of recurring trajectories.

The most basic method for finding orbits, the shooting method, integrates initial conditions and
extracts close recurrences. Due to exponential divergence of trajectories in chaotic systems, obtaining
recurrences requires exponentially precise initial guesses for longer orbits. Convergence becomes
near impossible due to required initialization precision, or accumulating numerical integrator error.
To avoid convergence issues, the variational method (8) is widely used. The initialization is a closed
loop in phase space, not necessarily satisfying the equations of motion. The loop is then varied
until satisfying evolution equations, resulting in a periodic orbit. As the loop is adapted locally, no
integration of conditions occurs. This gives a much greater radius of convergence, and variations of
the method modify loop representations (11) and optimization methods (2).

In Hamiltonian (energy-conserving) systems, periodic orbits are theoretically known to form continu-
ous, single-parameter families (7, 12, 3). Individual families of orbits do not bifurcate, terminating
only if a phase space coordinate or orbit period diverges. Bifurcations in the orbit spectrum are caused
by crossings of families at original and higher period multiples. These connected, one-dimensional
families of orbits are the perfect testbed for numerical continuation techniques. However, a majority
of periodic orbit studies do not consider the underlying orbit structure when finding solutions, re-
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sorting instead to grid search. Older numerical continuation searches have involved integrated the
Jacobian (13), a computationally expensive and numerically unstable task.

We consider the space of all possible variational loops, parametrizing a continuous loss with zeroes at
periodic orbits. Using Hessian eigenvectors to analyze this loss landscape, we demonstrate automatic
discovery of fixed point oscillations, continuation of orbit families, and detection of bifurcations in
the orbit spectrum. Our orbit propagation method combines continuation-based initializations based
on orbit structure with the greatly improved convergence of the variational method.

2 Background and Method

2.1 Variational Orbit Setup

We consider a general dynamical system dz⃗
dt = f⃗(z⃗) parametrized by some state vector z⃗ in a phase

space M. The time evolution of the system is given by integrating the phase space trajectory:

z⃗(t) ≡ f t(z⃗0) = z⃗0 +

∫ t

0

f⃗(z⃗(t′))dt′ (1)

A periodic orbit is defined by an initial condition z⃗0 ∈ M and a time T > 0 such that fT (z⃗0) = z⃗0.

To set up the variational method, we take a closed loop L, defined as a period T and a trajectory z⃗(t)
in phase space, with 0 ≤ t < T , z⃗ ∈ M, and z⃗(T ) = z⃗(0). At each point z⃗(t) on the trajectory, we
quantify the deviation of the loop trajectory dz⃗(t)

dt from physical evolution f(z⃗(t)), and average over
the entire trajectory to obtain a loss function on the loop:

ℓ(L) = 1

T

∫ T

0

∣∣∣∣dz⃗(t)dt
− f⃗(z⃗(t))

∣∣∣∣2 dt (2)

This loss function quantifies the overall deviation of the loop from a physical trajectory. Zeroes of ℓ
correspond to loops which always locally match physical evolution, and therefore are periodic orbits.
As the loss function is always nonnegative, at periodic orbits the loss ℓ and gradients ∇ℓ both vanish.

2.2 Hessian Analysis of Loss Landscapes

The loss function ℓ on the space of all possible loops P defines a loss landscape. The Hessian
Hℓ describes the local curvature of this loss landscape around a loop L ∈ P . For a periodic orbit
ℓ = 0, and the Hessian Hl(L,P) must be positive semi-definite. The minimum eigenvalues in an
eigendecomposition give minimum curvature magnitudes, and associated directions.

A zero eigenvalue gives a perturbation to the loop L maintaining zero loss and a periodic orbit. Each
zero eigenvalue corresponds to a unique direction, creating a subspace of possible perturbations. The
dimension of the connected periodic orbit space at L is given by the number of zero eigenvalues of
the Hessian Hl(L,P).

Taking a finite step in loop space along a flat direction gives an adjacent connected orbit. The new
initialization is an entire loop, meaning the subsequent periodic orbit optimization benefits from the
much larger radius of convergence of the variational method. This gives a continuation method for
orbits in the loss landscape of periodic loops with variational initialization and convergence.

2.3 Applications to Orbit Discovery

By propagating through the loss landscape, we can take a methodical approach to finding periodic
orbits that leverages the underlying structure of solutions (Figure 1).

Hessians find fixed point oscillations To test for periodic perturbations, we can initialize loops at
the fixed point with various periods T , and take the Hessian. A drop of the minimal eigenvalue to
zero indicates a period T with a periodic perturbation given by the corresponding eigenvector. By
sweeping values of T , all possible small oscillations around fixed points, which are starting points for
periodic orbit branches, can be systematically discovered.
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Figure 1: On left, a branch of orbits L emerging from a fixed point at period T0 (above) is found by
sweeping period T at the fixed point, and detecting a drop in the minimal eigenvalue λ (below). At
center, the increased radius of convergence (shaded) of the variational method allows for exploration
further along orbit families, with an orthogonal loop space constraint. On right, a crossing of orbit
families at L′ (above) is found by detecting a drop in the off-branch eigenvalue λ (below).

Loop space propagation improves continuation The larger radius of convergence in loop space
allows for larger steps to be taken and longer orbits to be continued, allowing exploration further along
orbit families even when integrator methods fail due to precision issues. The eigenvalue direction
gives an orthogonal orbit constraint in loop space, better constraining orbit optimization dynamics
compared to just an initial condition in phase space.

Hessians discover orbit family bifurcations If two orbit families cross, there will be a two-
dimensional null subspace at the bifurcation point, and a second eigenvalue will drop to zero along
the orbit family. Subharmonic bifurcations can be detected by multiply-winding the original loop to
represent multiple orbits, introducing fractional frequency components into the parametrization and
allowing perturbations over multiple periods to be detected.

3 Experiment

3.1 Implementation

We use the ideal double pendulum as a test system, with equal point masses and equal length massless
arms (m1 = m2 = l1 = l2 = g = 1). A system state is specified by arm angles θ1, θ2 and angular
velocities θ̇1, θ̇2, giving a four-dimensional phase space. A loop L is represented by a period T and
a closed trajectory z⃗(t), which we parametrize using a Fourier decomposition in time with a finite
frequency cutoff K:

z⃗(t) = a⃗0 +

K∑
k=1

a⃗k cos

(
2kπt

T

)
+ b⃗k sin

(
2kπt

T

)
, 0 ≤ t ≤ T. (3)

We implement computations in PyTorch (9) with float64 precision, combining the Rprop algorithm
(10) and linear extrapolation to handle varying magnitudes of parameters and gradients. We optimize
to a minimum of the integrated error, and take a convergence condition of

√
ℓ < 10−10. We propagate

along an orbit family in steps of size 0.5◦ in initial conditions space, doubling the frequency cutoff if
the convergence condition for ℓ is not reached. Orbit symmetries are used to reduce the parameter
count and Hessian size. For spatially symmetric double pendulum oscillations, where the two halves
of the orbit are mirrored, we evolve only components satisfying the symmetry constraint, which both
enforces a phase condition and avoids accidentally propagating to perturbed orbits.

All computation was conducted on CPUs; converging an orbit took between seconds and a few hours,
and memory requirements were primarily due to Hessian size. We started with K = 16 Fourier terms
per state parameter for small oscillations, rising to K = 1024 for the longest converged orbits.
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Figure 2: Minimum eigenvalue for period T with
both masses down (θ1 = 0, θ2 = 0); eigenvalue
minimums give out of phase and in-phase normal
modes and correct corresponding periods T .

Figure 3: Loop and integrator losses for in-phase
oscillations; variational convergence succeeds
even for longer periods T as masses approach
vertical, while integrator error diverges.

Figure 4: Minimum off-branch eigenvalue for
out of phase oscillations; additional eigenvalue
minimums give same period and period-doubling
bifurcations leading to new orbit families.

Figure 5: Bifurcating orbits are created by com-
binations of perturbations at same and higher
multiples of period, which can be interpreted by
following propagated branches.

3.2 Results

For double pendulum fixed points, we conducted sweeps of periods T from 0 to 10, with a step size of
∆T = 0.01. From eigenvalue minimums, we successfully recovered small oscillations of T = 3.39
and T = 8.21 around the stable fixed point (both masses down, Figure 2), and T = 5.28 around both
unstable saddle points (one mass down, one mass up), matching known normal modes.

Orbit families were successfully propagated from each small oscillation to orbits approaching a
period divergence, with masses within 5◦ of vertical. Loop loss remained below the convergence
condition, while once-around phase space integrator error scaled exponentially with orbit period T
(Figure 3). Even using scipy.integrate at double precision, longer period orbits are destroyed by
accumulating error, demonstrating the advantage of the variational method for more complex orbits.

Bifurcation detection via minimum off-branch eigenvalue was successful for both original period
perturbations and period doubling (Figure 4). By twice-winding the original loop, subharmonic
perturbations appear as additional eigenvalue minimums. Eigenvector directions give perturbed
loop initializations from bifurcation points, which become new starting points for propagating orbit
families.

By systematically building up a collection of branching orbit families, we can interpret more com-
plicated orbits in terms of simpler ones. Along orbit families, higher energy periodic solutions can
be understood as extensions of lower energy orbits. By following bifurcation perturbations, we can
intuitively break down a complicated motion into sums of simpler oscillations (Figure 5).

Propagating perturbations was successful across the phase space, with many branches also approach-
ing period divergences. A variety of rich behavior in the periodic orbit spectrum is revealed, such as
orbit families forming closed loops and additional bifurcation points. A plot of all converged periodic
orbits is shown in Figure 6.

4 Conclusion

We have introduced a loss landscapes perspective to searching periodic orbits. By probing loss
curvatures using the Hessian, we can systematically explore the structure of orbit families, determining
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Figure 6: Converged double pendulum periodic orbits in the Poincaré section with θ̇1 = 0; bifurcating
branches intersect and extend off continuous orbit families between fixed points.

connected classes of orbits and bifurcations. We obtain a numerical continuation method in loop
space, with variational initialization and convergence properties.

By combining the Rprop optimizer and linear extrapolation, we are able to converge orbits of
varying complexity across phase space. The success of this optimization routine demonstrates the
applicability of machine learning optimizers to problems in physical systems, allowing to take
advantage of developed tools and methods from machine learning such as parametrizations. However,
Hessian probing of loss landscapes and convergence techniques can be decoupled, and our propagation
method is also compatible with other variational methods in the literature.

Methodically searching orbits allows more complicated motions to be interpreted as combinations of
simple oscillations, giving a more interpretable method for analyzing periodic solutions. We look
forward to appllying our method of systematically propagating through the orbit spectrum to a wide
range of dynamical systems, and for further advances in periodic orbit search methods based on
machine learning principles.
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