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Abstract

Diffusion models have emerged as effective distribution estimators but their use
as priors in downstream tasks poses an intractable posterior inference problem.
This paper studies amortized sampling of the posterior over data, x ∼ 𝑝post (x) ∝
𝑝(x)𝑟 (x), in a model that consists of a diffusion generative model prior 𝑝(x) and
a black-box constraint or likelihood function 𝑟 (x). Recent work introduced an
asymptotically correct, and data-free learning objective: relative trajectory balance
(RTB), for training a diffusion model to sample from this posterior, a problem that
existing methods solve only approximately or in restricted cases. A particularly
useful application of unbiased posterior inference is the Bayesian approach to scien-
tific inverse problems such as gravitational lensing, which are otherwise ill-posed.
We apply RTB to such tasks, and showcase its effectiveness on high dimensional
Bayesian inverse problems with image data, including applications in classifier
guidance, phase retrieval, and the astrophysics problem of gravitational lensing.
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Figure 1: Sampling densities learned by various posterior inference methods (CG: classifier guidance, RL:
on-policy reinforcement learning with or without KL regularization) from a diffusion model sampling a mixture
of 25 Gaussians. See §F for details.

1 Introduction

Diffusion models [51, 24, 54] are a powerful class of hierarchical generative models, used to model
complex distributions over images [40, 9, 47], text [3, 10, 33, 23, 22, 35], and actions in reinforcement
learning [27, 61, 29] to name a few. In each of these domains, downstream problems require sampling
product distributions, where a pretrained diffusion model serves as a prior 𝑝(x) that is multiplied
by an auxiliary constraint 𝑟 (x). For example, if 𝑝(x) is a prior over images defined by a diffusion
model, and 𝑟 (x) = 𝑝(𝑐 | x) is the likelihood that an image x belongs to class 𝑐, then class-conditional
image generation requires sampling from the Bayesian posterior 𝑝(x | 𝑐) ∝ 𝑝(x)𝑝(𝑐 | x).
The hierarchical nature of the generative process in diffusion models, which generate samples from
𝑝(x) by a deep chain of stochastic transformations, makes exact sampling from posteriors 𝑝(x)𝑟 (x)
under a black-box function 𝑟 (x) intractable. Common solutions to this problem involve inference
techniques based on linear approximations [55, 30, 28, 8] or stochastic optimization [21, 39]. Others
estimate the ‘guidance’ term – the difference in drift functions between the diffusion models sampling
the prior and posterior – by training a classifier on noised data [9], but when such data is not available,
one must resort to approximations or Monte Carlo estimates [52, 11, 7], which are challenging
to scale to high-dimensional problems. Reinforcement learning methods that have recently been
proposed for this problem [6, 15] are biased and prone to mode collapse (Fig. 1).

Recently, [59] introduced an asymptotically unbiased objective for finetuning a diffusion prior to
sample from the Bayesian posterior. The objective was named relative trajectory balance (RTB) due
to its relationship with the trajectory balance objective [37], as they both arise from the generative
flow network perspective of diffusion models [32, 62]. In this paper, we demonstrate the effectiveness
of RTB through its application to intractable Bayesian inverse problems with image data in classifier
guidance, phase retrieval, and the scientific application of gravitional lensing.

2 Solving Bayesian inverse problems with relative trajectory balance

Inverse problems in science. A typical inverse problem in science is the following: We are inter-
ested in recovering some quantity x ∼ 𝑝(x). However, in the process of measurement, the quantity of
interest is perturbed by some noise, or instrumental systematic effect. The new observation y ∼ 𝑝(y)
contains information about the observation of interest, but it has been distorted by the experiment.
Furthermore, we assume (as it is often the case) that we have a good enough understanding of our
instrumentation, to be able to compute 𝑝(y|x), i.e., if we assume a true underlying x, we know how
likely it is to recover our observation. What we are interested in, however, is 𝑝(x | y), i.e., given our
observation, how likely is a given value of x.

Inverse problems such as these are very common in various scientific disciplines, but can be extremely
ill-posed, particularly if the noise is complex and non-linear, and if the quantities of interest are high-
dimensional. Traditional methods, such as Markov-Chain Monte Carlo, quickly become unusable on
complex problems, such as the ones we illustrate in Section 3 of this paper. Advances in generative
modelling [54] have made diffusion models suitable for learning rich and expressive priors from data
for inverse problems [1].

Summary of setting. We review the background and setup for diffusion models in §A. In short,
a diffusion model (in discretized time) describes a Markovian generative process x0 → xΔ𝑡 →
· · · → x1 by means of a drift function 𝑢𝜃 , representing the drift term in an Itô stochastic differential
equation (SDE). The initial, or noise, distribution 𝑝(x0) (typically a standard normal) and the process
parametrized by 𝜃 induce a terminal distribution 𝑝𝜃 (x1), which is used as a prior over x1 in the
inference problems we consider.
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Intractable inference under a diffusion prior. Consider a diffusion model 𝑝𝜃 , defining a marginal
density 𝑝𝜃 (x1), and a positive constraint function 𝑟 : R𝑑 → R>0. We are interested in training a
diffusion model 𝑝post

𝜙
, with drift function 𝑢post

𝜙
, that would sample the product distribution 𝑝post (x1) ∝

𝑝𝜃 (x1)𝑟 (x1). If 𝑟 (x1) = 𝑝(y | x1) is a conditional distribution over another variable y, then 𝑝post is
the Bayesian posterior 𝑝𝜃 (x1 | y).
Because samples from 𝑝post (x1) are not assumed to be available, one cannot directly train 𝑝 using the
forward KL objective (7). Nor can one directly apply objectives for distribution-matching training,
such as those that enforce the trajectory balance (TB) constraint (8), since the marginal 𝑝𝜃 (x1) is not
available. However, [59] makes the observation (Prop. 1) that an alternate constraint (9) relates the
denoising process which samples from the posterior to the one which samples from the prior (proof
in §C). Analogously to the conversion of the TB constraint (8) into a trajectory-dependent training
objective in [37, 32], the relative trajectory balance loss is defined as the discrepancy between the
two sides of (9), seen as a function of the vector 𝜙 that parametrizes the posterior diffusion model
and the scalar 𝑍𝜙 (parametrized via log 𝑍𝜙 for numerical stability):

LRTB (x0 → xΔ𝑡 → · · · → x1; 𝜙) :=

(
log

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1)

𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)

)2

. (1)

Optimizing this objective to 0 for all trajectories ensures that 𝑝post
𝜙
(x1) ∝ 𝑝𝜃 (x1)𝑟 (x1). See Fig. 1

for illustrative results in a synthetic GMM posterior inference task, compared to an approximate
inference RL baseline. While the RTB constraint in (1) has a similar form to TB (8), RTB involves
the ratio of two denoising processes, while TB involves the ratio of a forward and a backward process.
However, the name ‘relative TB’ is justified by interpreting the densities in a TB constraint relative
to a measure defined by the prior model; see §B.2.

Notably, the gradient of this objective with respect to 𝜙 does not require differentiation (backpropaga-
tion) into the sampling process that produced a trajectory x0 → · · · → x1. This offers two advantages
over on-policy simulation-based methods: (1) the ability to optimize LRTB as an off-policy objective,
i.e., sampling trajectories for training from a distribution different from 𝑝

post
𝜙

itself, as discussed
further in §B.1; (2) backpropagating only to a subset of the summands in (1), when computing and
storing gradients for all steps in the trajectory is prohibitive for large diffusion models. We discuss
further details about the training and parametrization in §B.1.

3 Experiments

In this section, we demonstrate the wide applicability of RTB to sample from high dimensional image
posteriors with diffusion priors.

3.1 Class-conditional posterior sampling from unconditional diffusion priors

We evaluate RTB in a classifier-guided visual task, aiming to learn a diffusion posterior 𝑝𝜙 (x | 𝑐) ∝
𝑝𝜃 (x)𝑝(𝑐 | x) using a pretrained diffusion prior 𝑝𝜃 (x) and a classifier 𝑟 (x) = 𝑝(𝑐 | x).

Setup. We use two 10-class datasets, MNIST and CIFAR-10, with off-the-shelf unconditional
diffusion priors from [24] and standard classifiers 𝑝(𝑐 | x). We fine-tune 𝑝𝜙 , initialized from the prior
𝑝𝜃 , using the RTB objective (see §G.1 for details). Optimization is performed on-policy with samples
from the current posterior model. Comparisons include RL-based fine-tuning from DPOK [15] and
DDPO [6], as well as classifier guidance baselines DPS [8] and LGD-MC [52]. Experiments cover
three scenarios: MNIST single-digit posterior (sampling each digit class 𝑐), CIFAR-10 single-class
posterior, and MNIST multi-digit posterior for multimodal cases, generating even or odd digits with
𝑟 (x) = max𝑖∈{0,2,4,6,8} 𝑝(𝑐 = 𝑖 | x) .

Results. Samples from RTB-fine-tuned posterior models are shown in Fig. 2. Table 1 reports mean
and standard deviation of metrics across all trained posteriors. RTB fine-tuning yields the highest
diversity (mean pairwise cosine distance in Inception v3 space) and closeness to true samples (FID),
with high expected log 𝑟 (x). Pure RL fine-tuning without KL regularization shows mode collapse,
trading diversity and FID for high rewards. Classifier-guided methods like DP and LGD-MC achieve
high diversity but poorly model the posterior (lowest log 𝑟 (x)). Additional results are in §G.
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Table 1: Classifier-guided posterior sampling with pretrained unconditional diffusion priors. We report the
mean and standard deviation of each metric across all relevant classes, highlighting values within ±5% of the
best results. FID is calculated between learned posterior and true samples.
Dataset→ MNIST MNIST even/odd CIFAR-10

Algorithm ↓Metric→ E[log 𝑟 (x)] (↑) FID (↓) Diversity (↑) E[log 𝑟 (x)] (↑) FID (↓) Diversity (↑) E[log 𝑟 (x)] (↑) FID (↓) Diversity (↑)
DPS −2.1597±0.423 1.2913±0.410 0.1609±0.000 −1.2270±0.202 1.1498±0.182 0.1713±0.000 −3.6025±0.503 0.7371±0.216 0.2738±0.000

LGD−MC −2.1389±0.480 1.2873±0.412 0.1600±0.000 −1.1720±0.199 1.1445±0.184 0.1600±0.000 −3.0988±0.359 0.7402±0.214 0.2743±0.000

DDPO −1.5±4.7×10−3 1.5822±0.583 0.1350±0.005 −8.6±12.3×10−11 1.8024±0.423 0.1314±0.002 −2.7±8.5×10−4 1.7686±0.589 0.1575±0.015

DPOK −0.1379±0.225 1.2063±0.316 0.1442±0.004 −0.0783±0.082 1.2536±0.206 0.1631±0.007 −2.4414±3.266 0.5316±0.157 0.2415±0.024

RTB (ours) −0.1734±0.194 1.1823±0.288 0.1474±0.003 −0.1816±0.175 1.1794±0.171 0.1679±0.004 −2.1625±0.879 0.4717±0.138 0.2440±0.011

Figure 2: Samples from RTB fine-tuned diffusion posteriors.

3.2 Fourier phase retrieval

Fourier phase retrieval is a classical inverse problem in which the objective is to recover a signal
from its Fourier magnitude [17]. The challenge lies in the loss of the phase information during
the measurement process, making the inverse problem highly ill-posed and non-unique [8]. Let x
represent the original signal, and the forward operator 𝐴(x) = |F (x) | denotes the magnitude of the
Fourier transform. The measurement y is the observed Fourier magnitude corrupted by noise of scale
𝜎, so y = |F (x) | + N (0, 𝜎2I).

Figure 3: Original, phase and posterior samples of an
RTB-finetuned prior model for the phase retrieval task
on MNIST and CIFAR-10 datasets.

The inverse problem is to infer the posterior
distribution 𝑝(x | y). We use RTB to fine-
tune a score-based prior 𝑝𝜃 (x) into an unbi-
ased posterior 𝑝𝜃 (x)𝑝(y | x) with likelihood
𝑝(y | x) ∝ exp

(
− ∥ |y−F(x) | ∥

2

2𝜎2

)
, for sample x

and reference measurement y, and where 𝜎
controls the temperature of the likelihood. We
set 𝜎 = 0.1 in all our experiments. We show
in Fig. 3 posterior samples from MNIST and
CIFAR-10 datasets.

3.3 Gravitational lensing

In general relativity, light travels along the shortest paths in a spacetime curved by the mass of
objects [14], with greater masses inducing larger curvature. An interesting inverse problem involves
the inference of the undistorted images of distant astronomical sources whose images have been
gravitationally lensed by the gravity of intervening structures [13]. In the case of strong lensing,
for example when the background source and the foreground lens are both almost perfectly aligned
galaxies, multiple images of the background source are formed and heavy distortions such as rings
or arcs are induced. In this problem, the parameters of interest are the undistorted pixel values of
the background source 𝑥, given an observed distorted image 𝑦. This problem is then linear, since the
distortions can be encoded in a lensing matrix 𝐴 (which we assume to be known): y = 𝐴x + 𝜖 , with
𝜖 ∼ N(0, 𝜎2I) a small Gaussian observational noise. The Bayesian inverse problem of interest is
the inference of the posterior distribution over source images given the lensed observation, that is
𝑝(x | y). We use the Probes dataset [56], containing telescope images of undistorted galaxies in the
local Universe, to train a score based prior over source images 𝑝𝜃 (x). Drawing unbiased samples
from the posterior 𝑝(x | y) ∝ 𝑝𝜃 (x)N (y; 𝐴x, 𝜎2I) is quite difficult, especially if the distribution is
very peaky with small 𝜎. RTB allows us to train an asymptotically unbiased posterior sampler.

We use RTB to finetune the prior model to this posterior, and compare against a biased training-free
diffusion posterior inference baseline [1] that previous work has used for this gravitational lensing
inverse problem. This method uses a convolved likelihood approximation (CLA) 𝑝𝑡 (y | x) ≈ N (y |
𝐴x, (𝜎2 + 𝜎2 (𝑡))I). For RTB we use 300 diffusion steps for sampling, but for CLA we require
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Table 2: Comparison between RTB and CLA for the lensing
problem. We compare mean likelihood log 𝑝(y | x), and lower
bound on the log-partition function log 𝑍 . Metrics are computed
with 50 posterior samples, and averaged across 3 runs.

Algorithm log 𝑝(y | x) (↑) log 𝑍 (↑)
CLA −8216.02 −12514.67
RTB −8367.9 −8676.85

Figure 4: Lensing problem RTB samples. Plotted are ground truth source, observation, samples from RTB
posterior, their mean observation after forward model (without observation white noise), and the residual between
posterior mean observations and ground truth observation.

2000 steps to obtain reasonable samples. We fix 𝜎 = 0.05 for our experiments. We report metrics
comparing these approaches in Table 2, and illustrative samples in Fig. 4. We found RTB to be a bit
unstable while training, likely because of the peaky reward function. About 30% of runs, the policy
diverged irrecoverably. For the sake of highlighting the advantages of unbiased posterior sampling,
the metrics computed in Table 2 excluded diverged runs. For this problem, we only used on-policy
samples, and we expect off-policy tricks such as replay buffers to help stabilize training.

4 Conclusion

In this work, we demonstrated the effectiveness of off-policy RL fine-tuning via the RTB objective
for asymptotically unbiased posterior inference for diffusion models. We applied RTB to challenging
high-dimensional Bayesian inverse problems, demonstrating its effectiveness in inverse imaging
and gravitational lensing. Extending RTB to other important scientific applications, such as inverse
protein design would be a promising direction for future research.
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A Background and setup

A.1 Diffusion models as hierarchical generative models

A denoising diffusion model generates data x1 by a Markovian generative process:
(noise) x0 → xΔ𝑡 → x2Δ𝑡 → . . .→ x1 = x (data), (2)

where Δ𝑡 = 1
𝑇

and 𝑇 is the number of discretization steps.1 The initial distribution 𝑝(x0) is fixed
(typically to N(0, I)) and the transition from x𝑡−1 to x𝑡 is modeled as a Gaussian perturbation with
time-dependent variance:

𝑝(x𝑡+Δ𝑡 | x𝑡 ) = N(x𝑡+Δ𝑡 | x𝑡 + 𝑢𝑡 (x𝑡 )Δ𝑡, 𝜎2
𝑡 Δ𝑡I). (3)

The scaling of the mean and variance by Δ𝑡 is insubstantial for fixed 𝑇 , but ensures that the diffusion
process is well-defined in the limit 𝑇 →∞ assuming regularity conditions on 𝑢𝑡 [42, 48]. The process
given by (2, 3) is then identical to Euler-Maruyama integration of the stochastic differential equation
(SDE) 𝑑x𝑡 = 𝑢𝑡 (x𝑡 ) 𝑑𝑡 + 𝜎𝑡 𝑑w𝑡 .

The likelihood of a denoising trajectory x0 → xΔ𝑡 → · · · → x1 factors as

𝑝(x0, xΔ𝑡 , . . . , x1) = 𝑝(x0)
𝑇∏
𝑖=1

𝑝(x𝑖Δ𝑡 | x(𝑖−1)Δ𝑡 ) (4)

and defines a marginal density over the data space:

𝑝(x1) =
∫

𝑝(x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡 . (5)

A reverse-time process, x1 → x1−Δ𝑡 → · · · → x0, with densities 𝑞, can be defined analogously, and
similarly defines a conditional density over trajectories:

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) =
𝑇∏
𝑖=1

𝑞(x(𝑖−1)Δ𝑡 | x𝑖Δ𝑡 ). (6)

In the training of diffusion models, as discussed below, the process 𝑞 is typically fixed to a simple
distribution (usually a discretized Ornstein-Uhlenbeck process), and the result of training is that 𝑝
and 𝑞 are close as distributions over trajectories.

Diffusion model training as divergence minimization. Diffusion models parametrize the drift
𝑢𝑡 (x𝑡 ) in (Equation 3) as a neural network 𝑢(x𝑡 , 𝑡; 𝜃) with parameters 𝜃 and taking x𝑡 and 𝑡 as input.
We denote the distributions over trajectories induced by (Equation 4, Equation 5) by 𝑝𝜃 to show their
dependence on the parameter.

In the most common setting, diffusion models are trained to maximize the likelihood of a dataset. In
the notation above, this corresponds to assuming 𝑞(x1) is fixed to an empirical measure (with the
points of a training dataset D assumed to be i.i.d. samples from 𝑞(x1)). Training minimizes with
respect to 𝜃 the divergence between the processes 𝑞 and 𝑝𝜃 :
𝐷KL (𝑞(x0, xΔ𝑡 , . . . , x1) ∥ 𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)) (7)
= 𝐷KL(𝑞(x1) ∥ 𝑝𝜃 (x1)) + Ex1∼𝑞 (x1 )𝐷KL (𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) ∥ 𝑝𝜃 (x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1))
≥ 𝐷KL (𝑞(x1) ∥ 𝑝𝜃 (x1)) = Ex1∼𝑞 (x1 ) [− log 𝑝𝜃 (x1)] + const.

where the inequality – an instance of the data processing inequality for the KL divergence – shows
that minimizing the divergence between distributions over trajectories is equivalent to maximizing a
lower bound on the data log-likelihood under the model 𝑝𝜃 .

As shown in [53], minimization of the KL in (Equation 7) is essentially equivalent to the traditional
approach to training diffusion models via denoising score matching [60, 51, 24]. Such training
exploits that for typical choices of the noising process 𝑞, the optimal 𝑢𝑡 (x𝑡 ) can be expressed in terms
of the Stein score of 𝑞(x1) convolved with a Gaussian, allowing an efficient stochastic regression
objective for 𝑢𝑡 . For full generality of our exposition for arbitrary iterative generative processes, we
prefer to think of (Equation 7) as the primal objective and denoising score matching as an efficient
means of minimizing it.

1The time indexing suggestive of an SDE discretization is used for consistency with the diffusion samplers
literature [64, 49]. The indexing x𝑇 → x𝑇−1 → · · · → x0 is often used for diffusion models trained from data.
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Trajectory balance and distribution-matching training. From (Equation 7) we also see that
the bound is tight if the conditionals of 𝑝𝜃 and 𝑞 on x1 coincide, i.e., 𝑞 is equal to the posterior
distribution of 𝑝 conditioned on x1. Indeed, the model 𝑝𝜃 minimizes (Equation 7) for a distribution
with continuous density 𝑞(x1) if and only if, for all denoising trajectories,

𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) = 𝑞(x1)𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1). (8)
This was named the trajectory balance (TB) constraint by [32] – by analogy with a constraint for
discrete-space iterative sampling [37] – and is a time-discretized version of a constraint used for
enforcing equality of continuous-time path space measures in [41].

In [45, 32], the constraint (8) was used for the training of diffusion models in a data-free setting,
where instead of i.i.d. samples from 𝑞(x1) one has access to a (possibly unnormalized) density
𝑞(x1) = 𝑒−E(x1 )/𝑍 from which one wishes to sample. These objectives minimize the squared
log-ratio between the two sides of (8), which allows the trajectories x0 → xΔ𝑡 → · · · → x1 used
for training to be sampled from any training distribution, such as ‘exploratory’ modifications of
𝑝𝜃 or trajectories found by local search (MCMC) in the target space. The flexibility of off-policy
exploration that this allows was studied by [49]. Such objectives contrast with on-policy, simulation-
based approaches that require differentiating through the sampling process [e.g., 64, 57, 5, 58].

B Relative trajectory balance: Additional details

Proposition 1 (Relative TB constraint). If 𝑝𝜃 , 𝑝post
𝜙

, and the scalar 𝑍𝜙 jointly satisfy the relative
trajectory balance (RTB) constraint

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1) = 𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) (9)

for every denoising trajectory x0 → xΔ𝑡 → · · · → x1, then 𝑝post
𝜙
(x1) ∝ 𝑝𝜃 (x1)𝑟 (x1), i.e., the diffusion

model 𝑝post
𝜙

samples the posterior distribution. Furthermore, if 𝑝𝜃 also satisfies the TB constraint

(8) with respect to the noising process 𝑞 and some target density 𝑞(x1), then 𝑝post
𝜙

satisfies the TB
constraint with respect to the target density 𝑞post (x1) ∝ 𝑞(x1)𝑟 (x1), and 𝑍 =

∫
𝑞(x1)𝑟 (x1) 𝑑x1.

Note that the two joints appearing in (9) are defined as products over transitions, via (4).

B.1 Training, parametrization, and conditioning

Training and exploration. The choice of which trajectories we use to take gradient steps with
the RTB loss can have a large impact on sample efficiency. In on-policy training, we use the current
policy 𝑝post

𝜙
to generate trajectories 𝜏 = (x0 → . . . → x1), evaluate the reward log 𝑟 (x1) and the

likelihood of 𝜏 under 𝑝𝜃 , and a gradient updates on 𝜙 to minimize LRTB (𝜏; 𝜙).
However, on-policy training may be insufficient to discover the modes of the posterior distribution.
In this case, we can perform off-policy exploration to ensure mode coverage. For instance, given
samples x1 that have high density under the target distribution, we can sample noising trajectories
x1 ← x1−Δ𝑡 ← . . .← x0 starting from these samples and use such trajectories for training. Another
effective off-policy training technique uses replay buffers. We expect the flexibility of mixing on-
policy training with off-policy exploration to be a strength of RTB over on-policy RL methods, as
was shown for distribution-matching training of diffusion models in [49].

Conditional constraints and amortization. Above we derived and proved the correctness of the
RTB objective for an arbitrary positive constraint 𝑟 (x1). If the constraints depend on other variables
y – for example, 𝑟 (x1; y) = 𝑝(y | x1) – then the posterior drift 𝑢post

𝜙
can be conditioned on y and the

learned scalar log 𝑍𝜙 replaced by a model taking y as input. Such conditioning achieves amortized
inference and allows generalization to new y not seen in training. Similarly, all of the preceding
discussion easily generalizes to priors that are conditioned on some context variable.

Efficient parametrization and Langevin inductive bias. Because the deep features learned by
the prior model 𝑢𝜃 are expected to be useful in expressing the posterior drift 𝑢post

𝜙
, we can choose to

initialize 𝑢post
𝜙

as a copy of 𝑢𝜃 and to fine-tune it, possibly in a parameter-efficient way (as described
in each section of §3). This choice is inspired by the method of amortizing inference in large language
models by fine-tuning a prior model to sample an intractable posterior [26].
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Furthermore, if the constraint 𝑟 (x1) is differentiable, we can impose an inductive bias on the posterior
drift similar to the one introduced for diffusion samplers of unnormalized target densities in [64] and
shown to be useful for off-policy methods in [49]. namely, we write

𝑢
post
𝜙
(x𝑡 , 𝑡) = NN1 (x𝑡 , 𝑡; 𝜙) + NN2 (x𝑡 , 𝑡, 𝜙)∇x𝑡 log 𝑟 (x𝑡 ), (10)

where NN1 and NN2 are neural networks outputting a vector and a scalar, respectively. This
parametrization allows the constraint to provide a signal to guide the sampler at intermediate steps.

Stabilizing the loss. We propose two simple design choices for stabilizing RTB training. First,
the loss in (1) can be replaced by the empirical variance over a minibatch of the quantity inside
the square, which removes dependence on log 𝑍𝜙 and is especially useful in conditional settings,
consistent with the findings of [49]. This amounts to a relative variant of the VarGrad objective [45].
Second, we employ loss clipping: to reduce sensitivity to an imperfectly fit prior model, we do not
perform updates on trajectories where the loss is close to 0.

B.2 Generative flow networks and extension to other hierarchical processes

Comparison with classifier guidance. It is interesting to contrast the RTB training objective with
the technique of classifier guidance [9] used for some problems of the same form. If 𝑟 (x1) = 𝑝(y | x1)
is a conditional likelihood, classifier guidance relies upon writing 𝑢𝑡 (x𝑡 ) − 𝑢post

𝑡 (x𝑡 ) explicitly in
terms of ∇x𝑡 log 𝑝(y | x𝑡 ), by combining the expression of the optimal drift 𝑢𝑡 in terms of the score
of the target distribution convolved with a Gaussian (cf. §A.1), with the ‘Bayes’ rule’ for the Stein
score: ∇x𝑡 log 𝑝(x𝑡 | y) = ∇x𝑡 log 𝑝(x𝑡 ) + ∇x𝑡 log 𝑝(y | x𝑡 ).
Classifier guidance gives the exact solution for the posterior drift when a differentiable classifier on
noisy data, 𝑝(y | x𝑡 ) =

∫
𝑝(y | x1)𝑝(x1 | x𝑡 ) 𝑑x1, is available. Unfortunately, such a classifier is not,

in general, tractable to derive from the classifier on noiseless data, 𝑝(y | x1), and cannot be learned
without access to unbiased data samples. RTB is an asymptotically unbiased objective that recovers
the difference in drifts (and thus the gradient of the log-convolved likelihood) in a data-free manner.

RTB as TB under the prior measure. The theoretical foundations for continuous generative flow
networks [32] establish the correctness of enforcing constraints such as trajectory balance (8) for
training sequential samplers, such as diffusion models, to match unnormalized target densities. While
we have considered Gaussian transitions and identified transition kernels with their densities with
respect to the Lebesgue measure over R𝑑 , these foundations generalize to more general reference
measures. In §D, we show how the RTB constraint can be recovered as a special case of the TB
constraint for a certain choice of reference measure derived from the prior.

Extension to arbitrary sequential generation. While our discussion was focused on diffusion
models for continuous spaces, the RTB objective can be applied to any Markovian sequential
generative process, in particular, one that can be formulated as a generative flow network in the sense
of [4, 32]. This includes, in particular, generative models that generate objects by a sequence of
discrete steps, including autoregressive models and discrete diffusion models. In the case of discrete
diffusion, where the intermediate latent variables x𝑡 lie not in R𝑑 but in the space of sequences,
one simply replaces the Gaussian transition densities by transition probability masses in the RTB
constraint (9) and objective (1). In the case of autoregressive models, where only one sequence of
steps can generate any given object, the backward process 𝑞 becomes trivial, and the RTB constraint
for a model 𝑝post

𝜙
to sample a sequence x from a distribution with density 𝑟 (x)𝑝𝜃 (x) is simply

𝑍𝜙𝑝
post
𝜙
(x) = 𝑟 (x)𝑝𝜃 (x) for all sequences x. We note that a sub-trajectory generalization of this

objective was used in [26] to amortize intractable inference in autoregressive language models.

C Proofs

Proposition 1 (Relative TB constraint). If 𝑝𝜃 , 𝑝post
𝜙

, and the scalar 𝑍𝜙 jointly satisfy the relative
trajectory balance (RTB) constraint

𝑍𝜙 · 𝑝post
𝜙
(x0, xΔ𝑡 , . . . , x1) = 𝑟 (x1)𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) (9)

for every denoising trajectory x0 → xΔ𝑡 → · · · → x1, then 𝑝post
𝜙
(x1) ∝ 𝑝𝜃 (x1)𝑟 (x1), i.e., the diffusion

model 𝑝post
𝜙

samples the posterior distribution. Furthermore, if 𝑝𝜃 also satisfies the TB constraint
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(8) with respect to the noising process 𝑞 and some target density 𝑞(x1), then 𝑝post
𝜙

satisfies the TB
constraint with respect to the target density 𝑞post (x1) ∝ 𝑞(x1)𝑟 (x1), and 𝑍 =

∫
𝑞(x1)𝑟 (x1) 𝑑x1.

Proof of Prop. 1. Suppose that 𝑝𝜃 , 𝑝post
𝜙

, and 𝑍 jointly satisfy (9). Then necessarily 𝑍 ≠ 0, since the
quantities on the right side are positive. We then have, using (5),

𝑝
post
𝜙
(x1) =

∫
𝑝

post
𝜙
(x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡

=
1
𝑍
𝑟 (x1)

∫
𝑝𝜃 (x0, xΔ𝑡 , . . . , x1) 𝑑x0 𝑑xΔ𝑡 . . . 𝑑x1−Δ𝑡

=
1
𝑍
𝑟 (x1)𝑝𝜃 (x1) ∝ 𝑝𝜃 (x1)𝑟 (x1),

as desired.

Now suppose that 𝑝𝜃 also satisfies the TB constraint (8) with respect to 𝑞(x1). Then, for any
denoising trajectory,

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1) =
𝑝𝜃 (x0, xΔ𝑡 , . . . , x1)

𝑞(x1)
=
𝑝

post
𝜙
(x0, xΔ𝑡 , . . . , x1)
𝑞(x1)𝑟 (x1)/𝑍

. (11)

showing that 𝑝post
𝜙

satisfies the TB constraint with respect to the noising process 𝑞 and the (not yet
shown to be normalized) density 1

𝑍
𝑞(x1)𝑟 (x1). We integrate out the variables x0, xΔ𝑡 , . . . , x1−Δ𝑡 in

(11), giving

1 =
𝑝

post
𝜙
(x1)

𝑞(x1)𝑟 (x1)/𝑍
𝑞(x1)𝑟 (x1) = 𝑍𝑝post

𝜙
(x1).

Integrating over x1 shows
∫
𝑞(x1)𝑟 (x1) 𝑑x1 = 𝑍 . □

D Relative TB as TB under the prior measure

The theoretical foundations for continuous generative flow networks [32] establish the correctness
of enforcing constraints such as trajectory balance (8) for training sequential samplers, such as
diffusion models, to match unnormalized target densities. While we have considered Gaussian
transitions and identified transition kernels with their densities with respect to the Lebesgue mea-
sure over R𝑑 , these foundations generalize to more general reference measures. In application to
diffusion samplers, suppose that 𝜋ref (x𝑡 ) is a collection of Lebesgue-absolutely continuous den-
sities over R𝑑 for 𝑡 = 0,Δ𝑡, . . . , 1 and that −→𝜋 ref (x𝑡 | x𝑡−Δ𝑡 ),←−𝜋 ref (x𝑡−Δ𝑡 | x𝑡 ) are collections of
Lebesgue-absolutely continuous transition kernels. If these densities jointly satisfy the detailed
balance condition 𝜋ref (x𝑡 )←−𝜋 ref (x𝑡−Δ𝑡 | x𝑡 ) = 𝜋ref (x𝑡−Δ𝑡 )−→𝜋 ref (x𝑡 | x𝑡−Δ𝑡 ), then they satisfy the con-
ditions to be reference measures. A main result of [32] is that if a pair of forward and backward
processes satisfies the trajectory balance constraint (8) jointly with a reward density 𝑟, then the
forward process 𝑝 samples from the distribution with density 𝑟, with all densities interpreted as
relative to the reference measures 𝜋ref ,

←−𝜋 ref ,
−→𝜋 ref .2

If 𝑝𝜃 is a diffusion model that satisfies the TB constraint jointly with some reverse process 𝑞 and
target density 𝑞(x1), then one can take the reference transition kernels −→𝜋 ref ,

←−𝜋 ref to be 𝑝 and 𝑞,
respectively. In this case, the TB constraint for a target density 1

𝑍
𝑟 (x1) and forward transition 𝑝post

𝜙
is

𝑝
post
𝜙
(x0, xΔ𝑡 , . . . , x1)

−→𝜋 ref (x0, xΔ𝑡 , . . . , x1)
=

1
𝑍
𝑟 (x1)(((((((((((

𝑞(x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1)

((((((((((((←−𝜋 ref (x0, xΔ𝑡 , . . . , x1−Δ𝑡 | x1)
, (12)

2Recall that the relative density (or Radon-Nikodym derivative) of a distribution with density 𝑝 under the
Lebesgue measure relative to one with density 𝜋 is simply the ratio of densities 𝑝/𝜋.
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which is identical to the RTB constraint (9). If (12) holds, then 𝑝post
𝜙

samples from the distribution
with density 1

𝑍
𝑟 (x1) relative to 𝜋ref (x1), which is exactly 1

𝑍
𝑝𝜃 (x1)𝑟 (x1). We have thus recovered

RTB as a case of TB for non-Lebesgue reference measures.

E Other related work

Composing iterative generative processes. Beyond the approximate posterior sampling algorithms
and application-specific techniques discussed in §1 and §3, several recent works have explored the
use of hierarchical models, such as diffusion models, as modular components in generative processes.
Diffusion models can be used to sample product distributions to induce compositional structure in
images [34, 12]. Amortized Bayesian inference [31, 44, 43, 19] is another domain of sampling from
product distributions where diffusion models are now being used [20]. Beyond product models, [18]
studies ways to amortize other kinds of compositions of hierarchical processes, including diffusion
models, while [50] proposes methods to sample the product of many iterative processes in application
to federated learning. Finally, models without hierarchical structure, such as normalizing flows, have
been used to amortize intractable inference in pretrained diffusion models [e.g., 16]. In contrast,
our method performs posterior inference by fine-tuning a prior model, developing a direction on
flexible extraction of information from large pretrained models [26].

Diffusion samplers. Several prior works seek to amortize MCMC sampling from unnormalized
densities by training diffusion models for efficient mode-mixing [5, 64, 57, 46, 58, 2]. Our work is
most closely related to continuous GFlowNets [32], which offer an alternative perspective on training
diffusion samplers using off-policy flow consistency objectives [32, 63, 49].

F Posterior inference on two-dimensional Gaussian mixture model

Setup We conduct toy experiments in low-dimensional spaces using samples from a Gaussian
mixture model with multiple modes to visually demonstrate its validity. The prior distribution 𝑝(x1)
is trained on a Gaussian mixture model with 25 evenly weighted modes, while the target posterior
𝑝post (x1) = 𝑟 (x1)𝑝(x1) uses a reward 𝑟 (x1) to select and re-weight 9 modes from 𝑝(x1). More
specifically, the resulting posterior is:

𝑝post (x1) =
1∑
𝑗 �̃� 𝑗

∑︁
𝑖

�̃�𝑖N(x1 | 𝜇𝑖 , I) (13)

{𝜇𝑖} = {(−10,−5), (−5,−10), (−5, 0), (10,−5), (0, 0), (0, 5), (5,−5), (5, 0), (5, 10)} (14)
{�̃�𝑖} = {4, 10, 4, 5, 10, 5, 4, 15, 4} (15)

Our objective is to sample from the posterior 𝑝post (x1). We compare our method with several
baselines, including policy gradient reinforcement learning (RL) with KL constraint and classifier-
guided diffusion models. For RL, we implemented the REINFORCE method with a mean baseline
and a KL constraint, following recent work training diffusion models to optimize a reward function [6].
Sampling according to the RL policy leads to a distribution 𝑞𝜃 (x1), which is trained with the objective:

𝐽 (𝜃) = E𝑞𝜃 (x1 ) [𝑟 (x1)] + 𝛼𝐷KL (𝑞𝜃 (x1)∥𝑝(x1)) (16)

While the exact computation of 𝐾𝐿 (𝑞𝜃 (x1)∥𝑝(x1)) is intractable, we follow the approximation
method introduced by Fan et al. [15], which sums the divergence at every diffusion step. This
approximation optimizes an upper bound of the marginal KL.

The other baseline is classifier (energy) guidance, which given a diffusion prior, samples using a
posterior score function estimate:

∇x𝑡 log 𝑝post (x𝑡 ) ≈ ∇x𝑡 log 𝑝(x𝑡 ) + ∇x𝑡 log 𝑟 (x𝑡 ) (17)

Note that this is a biased approximation of the true intractable score:
∇x𝑡 log 𝑝post (x𝑡 ) = ∇x𝑡 log 𝑝(x𝑡 ) + ∇x𝑡 logE𝑝 (x1 |x𝑡 ) [𝑟 (x1)] [36] (18)

For our experiments, we follow the source code3 provided in recent diffusion sampler benchmarks [49].
We utilize a batch size of 500, with finetuning at 5,000 training iterations, a learning rate of 0.0001,

3https://github.com/GFNOrg/gfn-diffusion
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(a) Prior (b) Posterior (c) 𝛼 = 1.0 (d) 𝛼 = 0.8 (e) 𝛼 = 0.7 (f) 𝛼 = 0.5 (g) 𝛼 = 0.3

Figure F.1: Tuning the KL weight 𝛼 in reinforcement learning: influences the balance between sticking to the
prior distribution and moving towards the modes of the reward density. A higher 𝛼 value maintains closer
adherence to the prior, while a lower 𝛼 allows a gradual shift towards high values of 𝑟 (x). Setting 𝛼 below 0.3
tends to cause mode collapse, moving too far from the prior and focusing on maximizing rewards for single
modes. 𝛼 = 0.5 gives us samples that closest resembles the posterior.

(a) Prior (b) Posterior (c) RTB (on) (d) RTB (off) (e) RL (on) (f) RL (off)

Figure F.2: Off-policy exploration benefits for RTB training. RTB, with simple off-policy exploration techniques
that increase randomness in the diffusion process, significantly improves mode coverage. On the other hand,
policy gradient RL methods which are typically used to finetune diffusion models are on-policy, and hence prone
to mode collapse.

a diffusion time scale of 5.0, 100 steps, and a log variance range of 4.0. The neural architecture
employed is identical to that used in [49]. For pretraining the prior model, we use the same hyperpa-
rameters as above, but with 10,000 training iterations using maximum likelihood estimation with true
samples.

Results. As we reported in the main text, in Fig. 1, we present illustrative results. The classifier-
guided diffusion model shows biased posterior sampling (Fig. 1f), failing to provide accurate inference.
RL with a per step KL constraint cannot exactly optimize for the posterior distribution, making
the tuning of the KL weight 𝛼 crucial to achieving desirable output Fig. F.1. RTB asymptotically
achieves the true posterior without introducing a balancing hyperparameter 𝛼. Another advantage
of our approach is off-policy exploration for efficient mode coverage. RL methods for fine-tuning
diffusion models (e.g., DPOK [15], DDPO [6]) typically use policy gradient style methods that are
on-policy. By using a simple off-policy trick introduced by [38, 32] and demonstrated by Sendera
et al. [49], we can introduce randomness into the exploration process in diffusion by adding 𝜖 2

𝑇
,

where 𝜖 is a noise hyperparameter and 𝑇 is the diffusion timestep, into the variances and annealing it
to zero over training iterations. We set 𝜖 = 0.5 for off-policy exploration. As shown in Fig. F.2, RTB
with off-policy exploration gives very close posterior inferences, whereas off-policy exploration in
RL with 𝛼 = 0.5 (which is a carefully selected hyperparameter) does not improve performance due to
its on-policy nature.

G On classifier guidance and RTB posterior sampling

Figure G.1: Samples from a posterior model fine-tuned with RL (no KL). We observe early mode collapse,
showcasing high-reward samples with minimal diversity.
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G.1 Experimental Details

In our experiments, we fine-tune pretrained unconditional diffusion models with our RTB objective,
to sample from a posterior distribution in the form 𝑝post (𝑥 | 𝑦) = 𝑝(𝑦 | 𝑥)𝑝(𝑥). In this section, we
detail the experimental settings for RTB as well as the compared baselines.

Experiments setting. For MNIST, we pretrain a noise-predicting diffusion model on 28 × 28
(upscaled to 32 × 32) single channel images of digits from the MNIST datasets. We discretize the
forward and backward processes into 200 steps and train our model until convergence. For CIFAR-10,
we use a pretrained model from [24], trained to generate 32×32 3-channel images from the CIFAR-10
dataset, while discretizing the noising/denoising processes into 1000 steps. For fine-tuning the prior,
we parametrize the posterior with LoRA weights [25], with the number of parameters equal to about
3% of the prior model’s parameter count. We train our models on a single NVIDA V100 GPU.

We compute FID as a similarity score estimate of the true posterior distribution from the data. As
such, the computation is limited to the total number of per-class-samples present in the data, (between
5k and 6k for CIFAR-10 and MNIST digits, and 30k for the even/odd task).

RTB. For RTB fine-tuning, we finetune a diffusion model following the objective in Equation 1. We
impose the objective while sampling denoising paths following a DDPM sampling scheme, with only
20% to 50% of the original trained steps. We employ loss clipping at 0.1, to account for imperfect
constraints in the pretrained prior, and train each of our models for 1500 training iterations, well into
convergence trends.

RL [15]. We implement two RL-based fine-tuning techniques derived from DPOK [15] and
DDPO [6], respectively with and without KL regularization. By following the same sampling scheme
as in our RTB experiments, we enable a direct comparison with RTB. To fine-tune the KL weight, we
perform a search over 𝛼 ∈ {0.01, 0.1, 1.0}.
DP [8]. We implement and adapt the Gaussian version of the posterior sampling scheme in [8],
originally devised for noisy inverse problems. This method relaxes some of our experimental
constraints, as it requires a differentiable reward 𝑟 (x). We perform a sweep over ten values of the
suggest parameter range for the step size 𝜁 ∈ [.1, 1.] on MNIST single-digit sampling, and choose
𝜁 = 0.1 for our experiments.

LGD-MC [52]. We adapt the implementation of the algorithm in [52] to sample from the classifier-
based posteriors in CIFAR-10 and MNIST. Similarly to the DP baseline, we use our pretrained
classifier to perform measurements at each sampling step, and use a Monte Carlo estimate of the
gradient correction to guide the denoising process. We choose 𝜁 = 0.1 following the DP experiments
and default the number of particles to 10 as per the authors’ guidelines.

G.2 Additional findings.

Classifier-guidance baselines. We find that the DP and LGD-MC classifier-guidance based base-
lines struggle to sample from the true posterior distribution in our experimental settings. The baselines
achieve the lowers classifier average rewards in all tested settings. Despite choosing 𝜁 = 0.1 as the
validate best performing hyperparameter, we also also observe the posterior samples from DP and
LGD-MC to be close to the prior. As such, DP and LGD-MC score high in diversity, and low in FID
for the Even/Odd experimental scenario, as expected from prior sampling benchmarks, but failing to
appropriately model the posterior distribution.

RL and mode collapse. In the pure Reinforcement Learning objective imposed for the experiments
in §3.1 (no KL), we observe a significantly higher reward than other baseline methods, while
showcasing increased FID and lower diversity. In Fig. G.1 we show a random set of 16 samples
for posterior models trained on 4 different classes of the CIFAR-10 datasets, as well as the Even
objective from the MNIST dataset, after 500 training iterations. In the figure, we observe early mode
collapse and reward exploitation, visually evident from the little to no variation amongst samples for
each class class, and single-digit collapse in the multi-modal even digits objective (see samples in
Fig. 2 for comparison with our RTB-finetuned models).

16


	Introduction
	Solving Bayesian inverse problems with relative trajectory balance
	Experiments
	Class-conditional posterior sampling from unconditional diffusion priors
	Fourier phase retrieval
	Gravitational lensing

	Conclusion
	Background and setup
	Diffusion models as hierarchical generative models

	Relative trajectory balance: Additional details
	Training, parametrization, and conditioning
	Generative flow networks and extension to other hierarchical processes

	Proofs
	Relative TB as TB under the prior measure
	Other related work
	Posterior inference on two-dimensional Gaussian mixture model
	On classifier guidance and RTB posterior sampling
	Experimental Details
	Additional findings.


