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Abstract

Recent advances in deep learning have greatly improved image deblurring for
natural scenes. However, applying these methods to physical experiments, espe-
cially those involving rapid, complex dynamics like hydrodynamic instabilities,
remains challenging. Unlike conventional deblurring tasks, these scenarios involve
motion blur tied to evolving physical processes, complicating image restoration.
We propose CLARIPHY, a transformer-based approach utilizing the Restormer
model, fine-tuned on a novel deblurring dataset derived from Rayleigh-Taylor
instability simulations. This dataset features pairs of sharp and artificially spatial
and temporal blurred images, reflecting the real-world conditions of physical ex-
periments. Leveraging the self-attention mechanism of transformers, CLARIPHY
effectively captures spatiotemporal dependencies crucial for deblurring images of
dynamic phenomena. Our results show that CLARIPHY outperforms the original
SOTA Restormer model, providing enhanced clarity and accuracy in time-sensitive
physical experiments.1

1 Introduction

Image deblurring, a critical task in the field of computer vision, involves the restoration of sharp
images from blurred ones, which can result from various factors such as camera shake, object
motion, or defocus during image capture [28]. Over the years, significant advancements have been
made in this domain, particularly with the advent of deep learning techniques and models achieving
remarkable success in natural scene deblurring [8, 30].

Nonetheless, these models often fall short when applied to images captured in physical experiments,
particularly in scenarios involving rapid, complex dynamics [12]. Unlike natural scenes where
objects move predictably, physical experiments frequently involve phenomena that evolve swiftly and
unpredictably, such as hydrodynamic instabilities. These phenomena introduce unique challenges
in imaging, where motion blur is not merely the result of a moving object but is intrinsically tied to
the evolving physical process [18]. Moreover, the limited number of images that can be captured in
these experiments, due to the rapid dynamics, necessitates highly precise deblurring techniques.
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1Source code and dataset: https://github.com/Scientific-Computing-Lab/ClariPhy
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One specific domain where the challenges of image deblurring become particularly evident is X-ray
radiography, a powerful imaging technique widely used in medical diagnostics, non-destructive test-
ing, and physical experiments, such as studies of hydrodynamic instabilities in High-Energy-Density
Physics (HEDP) experiments [3, 17, 1, 19, 20, 4]. In these applications, capturing sharp radiographic
images is crucial, as they are the basis for further processing steps, including 3D reconstruction,
extraction of initial experimental conditions, and assessment of material composition [27]. The rapid
and complex dynamics in these experiments demand precise deblurring methods to ensure that the
quantitative physical properties extracted from the images are accurate and reliable [25].

While X-ray radiography is extensively used in medical imaging [15], and several deblurring methods
have been developed for these scenarios [16], their application in physical experiments involving
instabilities presents distinct challenges. In studies of phenomena like the Rayleigh-Taylor instability
(RTI) [9] the systems under observation are highly dynamic, allowing only a single or few radiographs
to be taken. This rapid and unpredictable movement causes significant motion blur, as the boundaries
of the measured objects shift during imaging. Additionally, both the measurement apparatus and the
experimental setup introduce further spatial blurring and noise into the radiographic images.

Consequently, there is a critical need for advanced computational tools that can effectively remove
both motion and spatial blur from these images. While classical deconvolution methods can address
simple blurring and noise, they fall short in reconstructing sharp images when dealing with the
complex combination of motion and spatial blur inherent in these physical experiments [2]. Effective
deblurring techniques are therefore essential to enable accurate quantitative analysis and extraction of
meaningful physical properties from radiographic data in such challenging environments.

1.1 Related Work

Deep-learning Deblurring: Traditional deblurring techniques primarily relied on deconvolution
methods [6]. However, these methods often struggled with real-world images, particularly when the
blur was spatially variant or when the noise levels were high. Deep learning has significantly shifted
the paradigm for image deblurring by moving away from explicit blur kernel estimation. Instead,
deep neural networks (DNNs) learn to map a blurred image to its sharp counterpart directly [23].
Later, generative adversarial network (GAN) methods were introduced [10], improving the perceptual
quality of deblurred images and setting a new standard for visual plausibility in deblurring tasks.
Vision Transformers (ViTs) have recently emerged as a powerful alternative to CNNs for various
image-processing tasks, including deblurring. Unlike CNNs, which rely on local receptive fields,
Vision Transformers leverage self-attention mechanisms to capture long-range dependencies and
global context, which are crucial for effectively handling spatially variant blur [13, 26, 29].

Deblurring for HEDP and Hydrodynamic Instabilities: Until recently, denoising and deblurring
radiographic images from High Energy Density Physics (HEDP) experiments primarily relied on
classical methods [31, 14]. Recent studies have introduced CNNs for these tasks. For example,
[11] uses a deep convolutional neural network with a modified DenseNet architecture, assuming a
noise and blur model based on Poisson noise with additional Gaussian blur factors. However, due
to the scarcity of physical simulation images, the model is mainly trained on natural images with
synthetic noise. Another study [21] presents a direct 3D reconstruction of Inertial Confinement Fusion
(ICF) experiments for Richtmyer–Meshkov instability using an attention-based transformer network,
without prior deblurring. In contrast, our study leverages a large-scale dataset of full simulation
images of the RTI, to which realistic temporal and spatial blur effects have been added. This enables
training a model for physical deblurring based on the physical phenomenon accurate development as
described in the simulations, resulting in a robust physically-aware approach.

Contributions. Contrary to prevalent deblur tasks when a static object is captured through time,
physical experiments often include a dynamic, place, and structural changing object through time.
While plenty of models address the first task, many fail when tackling the second. In this study, we
have created a dataset comprising pairs of physical images, specifically RTI, when one image is
sharp and the other has motion and spatial blur. We have developed an effective vision-transformer
model based on fine-tuning Restormer [29] for deblurring physical experiments in general, and
demonstrating good results on CLARIPHY dataset (section 2).

The main contributions of this paper are:



• CLARIPHY dataset creation — Spatial and temporal blur has been applied to the RayleAI dataset
to create pairs of blur and original examples (section 2).

• Rayleigh-Taylor instability Restoration model, named CLARIPHY — We fine-tuned the pre-trained
Restormer model, a ViT model that is trained for image restoration tasks (section 3).
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Figure 1: RayleAI dataset examples by alternating gravity (g) [cm/s2] (negative values), Atwood (A),
and Amplitude (h) [cm]. While the time step presented is fixed at 0.55, it is clear that the different
parameters influence the instability shape significantly.
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Figure 2: CLARIPHY dataset formation process based on RayleAI dataset. The new database is
created through physical parameter alterations such as amplitude, gravity, and Atwood. This, in
turn, results in different Rayleigh-Taylor instabilities’ processes, which are then pre-processed. Pairs
of temporal-spatial blur and the original process are produced. Temporal blur is achieved using an
average of 5 following images in a time-set, while spatial is achieved by a convolution with a sphere.

2 Deblurred Labeled Dataset of Rayleigh-Taylor Hydrodynamic Instability

RTI occurs at the interface between two fluids of differing densities when a lighter fluid exerts
pressure on a heavier fluid, leading to an unstable configuration [22]. This instability is observed in a
wide range of hydrodynamic experiments and natural phenomena, such as ICF, the behavior of water
suspended on oil under Earth’s gravity, and various astrophysical systems [5].

In a prior study [7], a comprehensive dataset named RayleAI was developed, based on hydrodynamic
simulations of RTI inspired by the well-known experiment conducted by Waddell et al. [24] (see
examples in Figure 1). The RayleAI dataset was specifically designed to support the analysis of RTI
evolution using advanced computer vision techniques. It includes over 100,000 images generated
from 1,350 different simulations, with each simulation captured at 75 distinct time intervals. These
simulations encompass variations in critical physical parameters that influence RTI, such as density
ratio, acceleration, and initial perturbation amplitude.

As previously explained, in real-world experiments, and in contrast to the clear simulation images in
RayleAI, temporal and spatial blur occur. Thus, we leveraged the RayleAI dataset to create a new



dataset consisting of pairs of input clear images as ground truth and artificially created blurred images,
simulating potential outcomes of physical experiments. Spatial and temporal blur has been chosen to
imitate real physical experiment measurements. The spatial blur is created by sphere convolution
at 4 different levels (sphere radius of 3,5,7 or 9 pixels), and the temporal blur by averaging images
pixel-wise, each in a different timestamp at 5 different levels (averaging 3,5,7,9, or 13 consecutive
time-points) (Figure 2).

3 CLARIPHY Model and Experimental Results

The CLARIPHY model is a fine-tuned version of the Restormer architecture, specifically trained to
deblur input blurred images, restoring them to their corresponding GT images, which are unblurred.
CLARIPHY was compared against the original Restormer model inference and CLARIPHY-tiny—a
variant of this Restormer fine-tune trained on just 10% of the data. The model training was carried
out with a batch size of 8, 30 epochs, an L1 loss, and an Adam optimizer. The model was trained and
executed on a 40GB NVIDIA A100 GPU using PyTorch.

The performance of the models is illustrated in Figure 3 (over time complexity in the dataset) and
Figure 4 (over epochs during training evaluation), using two key metrics: Structural Similarity Index
(SSIM) and Peak Signal-to-Noise Ratio (PSNR). The CLARIPHY model consistently outperforms the
original Restormer model throughout the experiment, maintaining a higher structural similarity to the
ground truth across all timestamps, with only minor fluctuations as the complexity of the examples
increases over time. The higher SSIM values compared to PSNR highlight SSIM’s ability to detect
subtle quality improvements through structural and perceptual analysis, which PSNR, focusing on
pixel-wise errors, may overlook. Interestingly, CLARIPHY-tiny, despite being trained on only a
fraction of the data, closely tracks the performance of the full CLARIPHY model, suggesting that our
models are highly efficient learners.
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Figure 3: Deblurring models performances in SSIM and PSNR metrics as a function of time, while
every timestamp is another, different, harder example to deblur. Our models’ trends — CLARIPHY,
and CLARIPHY-tiny, trained only on 10% of the database, show convergence. This implies that a
tiny portion of our database is sufficient for qualitative learning. As time passes examples are more
complex, hence, metrics are decreasing. Yet, our model remains superior to SOTA Restormer.
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Figure 4: Metrics trends on validation set for both CLARIPHY and CLARIPHY-tiny are the same,
thus, demonstrating the 10% of the dataset is sufficient for learning.



To provide a qualitative assessment, Table 1 showcases the CLARIPHY model’s output across
varying levels of difficulty: easy, medium, and hard. In the easy examples, the differences between
the input and the reconstructed output are minimal, with the original Restormer and CLARIPHY
accurately approximating the ground truth. As the difficulty increases, the challenge becomes
apparent, particularly for the original Restormer, which struggles to capture the finer details of the
RTIs. However, CLARIPHY demonstrates remarkable resilience, maintaining its performance even in
the most complex cases.

Difficulty Input Original Restormer CLARIPHY Ground Truth

Easy

Medium

Medium

Hard

Hard
Table 1: Comparison of different methods (Input, Original Restormer, CLARIPHY, Ground Truth)
across varying difficulty levels (Easy, Medium, Hard).
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