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Abstract

In this paper, we employ Symbolic Regression (SR) to recover symbolic formulae
for the primary conformal weights and central charges of two-dimensional rational
conformal field theories (2D-RCFTs) given limited information about the energy
spectra of these theories. We find symbolic expressions for these quantities in two
well-understood classes of 2D-RCFT, minimal models and Wess-Zumino-Witten
(WZW) ŝu(2)k models, and discuss future applications to theories about which
less is known.

1 Introduction

Conformal Field Theory (CFT) is a type of Quantum Field Theory (QFT) which is invariant under
conformal transformations. This enhanced symmetry places strong constraints on the theory such
that some models can be exactly solvable in two-dimensions [3]. Two well-known types of such 2D
Rational Conformal Field Theory (RCFT) with a finite number of primary operators are minimal
models and Wess-Zumino-Witten (WZW) models. The minimal models are specifically generated
by complex Lie algebras called Virasoro algebras [8, 10], while the WZW models are generated
by Virasoro algebras with additional symmetry from affine Lie algebras such as ŝu(2)k [8]. In this
context, one can determine physical quantities such as correlation functions, operator contents, and
the partition functions explicitly [5].

Similar to quantum mechanics, one of the best ways to understand a conformal field theory is by
studying its energy spectrum. In the context of 2D-RCFTs, understanding the energies can directly
give us hints about the correlation functions [4, 8, 10] and the geometrical or topological properties
[6, 12] of the theory. The energies in 2D-RCFTs usually take the form En = hn +N − c

24 where hn

are called the primary conformal weights, N can be any positive integer, and c is the central charge
that measures the degrees of freedom of the theory. Explicit formulas are known for both c and hn [4,
8, 10]. However, both of these calculations require knowledge of the operator content of the theory,
which may not be known in full for some classes of CFT.

The task of obtaining the explicit form of conformal weights given limited knowledge about the
theory remains unexplored. Given recent advances in Symbolic Regression (SR), we apply pySR
[7], a high-performance SR framework that returns human-interpretable expressions as outputs, to
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Figure 1: Mutation Operation on an expression tree [7].

recover the symbolic formula of c and hn given the representation of the theory and its lowest few
primaries. We will work on RCFTs as a first experiment to show that pySR has the potential to obtain
more information about the spectrum of a theory based on the lowest energy states.

2 Related Work

The conformal bootstrap program, which dates back to the 1970s [9, 17, 18, 20, 21], is one of the most
promising methods to extract exact or highly accurate information about the spectrum of anomalous
scaling dimensions of conformal field theories, which are related to the lowest few hn [3]. Recently,
work using Reinforcement Learning (RL) has been performed to find numerical solutions of the 2D
Ising model and 2D compactified boson in the context of the conformal bootstrap [14, 15].

The energy spectrum for non-rational CFTs with an infinite number of primary fields is usually
determinable given the lowest few levels [3, 18]. Work using Principal Component Analysis (PCA)
has shown that for a 3-manifold theory dual to a 2D logarithmic CFT, the lowest few energy gaps or
consecutive energy ratios contribute the most to the entire energy spectrum [6, 12].

Several recent works have explored the application of symbolic regression techniques to "discrete"
theoretical data where the inputs and outputs are exact and no noise is present. Examples of such
work in this space includes the use of symbolic regression to find Green’s functions for particular
partial differential operators [11], to solve the Landau-Zener time evolution problem [2], and to
characterize the topology of Calabi-Yau manifolds [1]. To our knowledge, our work is the first to
apply symbolic regression to rational conformal field theories.

3 Method: Symbolic Regression

Symbolic regression is a regression analysis framework that attempts to approximate relations between
inputs and outputs by searching the space of symbolic expressions instead of fitting individual
parameters in a continuously parameterized model [7]. A wide variety of SR models and packages
exist; recent approaches include Transformer-based models [13], reinforcement-learning based
models [16], and evolutionary algorithm-based models [7, 19], among many others. In this work, we
apply the open-source package pySR [7], which employs a tournament-style evolutionary algorithm
to search for a set of equations that fit the data.

The model contains a set of parameters, operators, variables, and constraints which are combined
into trees representing symbolic expressions. Through iterative processes of selection, crossover, and
mutation, akin to natural evolution, the algorithm evolves the population over multiple generations
and selects those that best fit the input data (as measured by minimizing the mean squared error).
An example of the dynamics of crossover mutation on expression trees is illustrated in Figure 1. In
constructing our trees, we employ the basic binary operators +,−,×, and ÷ for all models, as well as
the unary operator "square" for the minimal models only.

In order to target our search towards gaining insight into the underlying structure of the theory [7],
we wish to balance simplicity and accuracy, prioritizing expressions that are as concise as possible
while still fitting the data well. In addition to mean squared error loss, we report "complexity"
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(number of nodes in the expression tree) and "score" (negative derivative of the log-loss with respect
to complexity) for all selected expressions.

4 Data Generation

4.1 Setup

We are interested in the energy spectrum spanned by the primary conformal weights and central
charge; these energies can be expressed as En = hn − c

24 . We observe that the spectrum contains
both the primary conformal weights hn and the descendant conformal weights hn +N . Therefore,
we apply pySR to the primary conformal weights only, as the rest of the spectrum can be generated
by adding positive integers N .

For minimal models, the explicit expressions for c and hr,s are:

cp,q = 1− 6
(p− q)2

4pq
;hr,s =

(pr − qs)2 − (p− q)2

4pq
(1)

where p and q are positive integers that are coprime and satisfy {p, q} ≥ 2. The (r, s) pairs represent
energy levels of the given theory and satisfy 1 ≤ r ≤ q − 1 and 1 ≤ s ≤ p− 1. Similarly, for WZW
models, the explicit expressions for central charge and conformal weights are:

ck =
3k

k + 2
;hl =

l(l + 2)

4(k + 2)
(2)

where k is the positive integer that characterizes the WZW ŝu(2)k theory and l represents the energy
levels and ranges from 0 to k.

4.2 Data

In total, we have four different sets of data(two types of CFT and two tasks). In all cases, the target
variable is the last term in the PySR input expression (either c or h). In these experiments, we assume
that the quantum numbers l and [r, s] are known, which may not hold for an arbitrary CFT. In later
sections, we will briefly mention the potential extension of our project to less understood CFTs.

Our first task is to obtain the expression for the central charge c. We randomly choose 100 conformal
field theories with distinct pairs of p and q (in the case of minimal models) or distinct k (in the case
of WZW models). Each distinct pair fixes a theory with a central charge c according to Equation 1
and Equation 2. Our data format is [p, q, cp,q] for minimal models and [k, ck] for WZW models.

Our second task is to obtain expressions for the primary conformal weights hn. In analogy to similar
recent work [12], we restrict our data to the lowest few energies and attempt to recover the formula
for the primary conformal weights.

To construct our dataset, we include 100, 200, and 300 distinct theories with 10%, 30%, 50% lowest
primary conformal weights from each theory. We monitor pySR’s performance across the nine data
regimes for each CFT family and discuss the results in the Appendix. Here, in analogy to similar
recent work [12], we restrict our data to the lowest energies and attempt to recover the formula for
the primary conformal weights. For all CFT families, we report our results on the 100 distinct CFTs
with the smallest Coxeter numbers (k, in the case of WZW models and (p, q) in the case of minimal
models), and of these we choose the lowest 10% of primary conformal weights (in the case of WZW
models) or lowest 30% of primary conformal weights (in the case of minimal models). We report
additional results using larger proportions of the dataset in the Appendix.

For the WZW models, we format the data as [k, l, hl], where l indexes the individual states and h
is the primary energy. For the minimal models, we format the input data as [p, q, r, s, hr,s], where
the quantum number l is replaced by the tuple [p, q]. With no additional constraints, we recover the
exact symbolic formula for the WZW models and a nearly-exact formula for the minimal models.
If we impose an additional constraint encouraging the model to prioritize integers when building
expression trees, we successfully recover the exact formula for minimal models as well.
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Data Symbolic Formula of c MSE

WZW ŝu(2)k Model

Exact Formula 3k/(k + 2)

pySR Input [k] (k + k + k)/(k + 2.00) ∼ 1.01e-11

pySR Input [k] Simplified 3k/(k + 2.00) Exact

Minimal Model

Exact Formula 1− 6 (p−q)2

pq

pySR Input [p, q] (−1) (−1.00) + (p−q)2

q p
−6.00

∼ 6.50e-13

pySR Input [p, q] Simplified 1.00− 6.00 (p−q)2

pq Exact

Table 1: Symbolic expressions for central charge. Floating-point constants returned by PySR are here
expressed to two decimal places. While the expressions recovered are exactly correct, the MSE is not
exactly zero due to the precision of floating point operations.

5 Results

5.1 Recovering symbolic expressions for central charge

The exact symbolic formula for central charge can be discovered easily with minimal usage of
operators and constraints. We included 400 n-iterations with a total population of 20, resulting a total
of 8000 iterations in the model. Our results are summarized in Table 1. For WZW ŝu(2)k models,
we applied the basic binary operators with unary operator "square." After around 2000 iterations, the
exact formula 3k

k+2 is recovered. For minimal models, we adopt the basic binary operators along with

the unary operator "square." We recover the exact formula 1− 6 (p−q)2

pq after around 3900 iterations.
For both classes of CFT, the runtime is approximately 16 minutes. All experiments in both this and
the following section are performed on an ASUS TUF Dash F15 laptop with an Intel Core i7 CPU.

5.2 Recovering symbolic expressions for primary conformal weights

We summarize a set of symbolic expressions for both CFT models in Table 2. We select the model
with 600 n-iterations and a total population of 20, corresponding to 12000 iterations. For both
families of rational CFT studied, we present the complete symbolic formulae obtained from the data
described in Section 4. We employ the "integer column" technique to extract symbolic formulae in
the following manner: first, we limit the use of constant operators such as 0.249 by assigning them a
high complexity penalty. Next, we concatenate positive integers [1, ..., 10] to the data as additional
input variables [7]. In this construction, PySR is strongly encouraged to choose its constants from the
integers (or any combination of integers) in these columns. Hence, the resulting equation is more
likely to be exact. We stress that this method is immediately applicable only in the regime where the
target equation is known to be characterized by rational numbers (such as those governing rational
CFTs), and may not extend as readily to the case of non-rational CFTs.

For WZW models, we first include the basic binary operators and unary operator "square" with no
additional constraints. After simplification, the formula is the same as the exact one if we approximate
0.2502 to 1

4 and 1.9942 to 2. When constants are restricted to the integers, we exactly recover the
correct formula with very low MSE.

For the minimal models, the first result is obtained by the same application of constraints as for the
WZW models. After simplification, the symbolic equation is close to the exact formula, except that
the denominator of the first term is 2 instead of 4 (as shown in Table 2). As per results shown in
the appendix, we find that the integer column technique is less effective for minimal models than
for WZW models. In order to further reduce the complexity of the equation, we disallow the nested
operator square(square(...)), and are at last able to successfully recover Equation 1. However, this
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Data Symbolic Formula of h MSE

WZW ŝu(2)k Model

Exact Formula l(l+2)
4(k+2)

pySR Input [k, l] α1
(α2+l)( l

α3
)

(k+α2)
5.24e-10

pySR Input [k, l], Simplified α1

α3
l(l+α2)
k+α2

pySR Input [k, l], with Integers l(l+2)
4(k+2) Exact

Minimal Model

Exact Formula (pr−qs)2−(p−q)2

4pq

pySR Input: x1
x0+x0

(x2 x0
x1

−x3)2

− x0
β1(

x0
x0−x1 )

2x1
β2 3.489e-05

pySR Input: [p, q, r, s], Simplified (pr−qs)2

2pq − (p−q)2

β1pq
β2

pySR Input: [p, q, r, s], with Integers (−pr+qs)2−(−p+q)2

4pq Exact

Table 2: Symbolic Expressions for conformal weights. For ease of notation, floating-point constants
returned by PySR are here expressed as variables: α1 = 0.48822, α2 = 1.9952, α3 = 1.9514 for the
WZW models and β1 = 1.9896, β2 = 0.49295 for the minimal models.

clearly requires us to impose a strong external bias that may not be desirable for other theories- thus,
we underscore that, when performing symbolic regression in a "discrete" regime where the loss
curve may exhibit strong discontinuities (such as that of the rational CFTs), additional care must
be undertaken to better understand the necessary complexity penalties required for specific types of
mutation.

6 Conclusion and Outlook

We use the symbolic regression tool pySR to study minimal models and WZW models, two varieties
of 2D rational conformal field theory. For a number of theories, we obtain symbolic formulae for
the central charge using the integers that index the theories and for the primary conformal weights
using these and the integers that index the lowest few energies. By adding a basis of integer columns
together with a restriction on the nesting behavior of the "square" operator, pySR successfully picks
the correct integers or combinations of integers to recover the exact symbolic formula for both models.
We thus show that, under an appropriate set of constraints, pySR performs well with even limited
information (lowest few conformal weights of the energy spectrum). When more conformal weights
are added, we note that our performance may drop (see Appendix), suggesting that these constraints
may be too strong outside the low-energy regime. More effort may therefore be needed in order to
understand how best to adapt pySR to perform exact symbolic regression on rational function data.

An immediate extension of our work is to explore whether our method applies to other CFTs such as
3D Ising CFTs or O(N) models without any quantum numbers or labels associated with the spectrum.
In future work, we intend to explore these questions, as well as the applicability of other symbolic
regression tools such as Transformers [22] to our task.
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Percentage 100 Theories 200 Theories 300 Theories

No integer columns

10% 9.449299e-12 8.151944e-12 1.159401e-09

30% 1.844283e-08 2.044487e-14 2.545054e-08

50% 1.279936e-11 5.608435e-14 8.549776e-12

Integer columns

10% 0 0 1.119128e-16

30% 0 4.189906e-15 1.013663e-14

50% 0 2.367243e-14 0

Table 3: The loss of the output symbolic expressions for the WZW models.

A Additional Results

In this section, we present the complete result of conformal weight prediction on 100, 200, or 300
distinct theories, using the lowest 10%, 30%, or 50% of conformal weights. For each theory, we
record the complexity, score, and loss in each of these nine data subsets in order to understand the
performance of PySR across the different data regimes. We do not provide symbolic expressions
recovered by PySR in these experiments.

A.1 The WZW ŝu(2k) Models

As shown in Table 3 and Table 4, across different numbers of distinct theories and percentages of the
total energy spectrum within each theory, the loss for the non-integer datasets reduces to below 10−8,
which is small in magnitude compared to the individual conformal weights. However, as we add
larger percentages of the spectrum to the input, the model generally shows increase in the complexity
except for only the 300 theories with 50% spectrum. In comparison, when we adopt the integer
column methods, the complexity decreases significantly, while the MSE loss drops quickly. For those
datasets where the score is infinity and the loss is 0, the symbolic equations are exact.

A.2 The Minimal Models

Similar situations appear for the minimal models without the integer columns as shown in Table 5
and Table 6. The best data setup is found in 100 theories with 30% of the total spectrum with a loss
of order 10−5. This result is recorded in Section 5 as well. However, the dataset with integer columns
doesn’t work well as we would’ve expected. The loss of the discovered equations doesn’t converge
as much as in the WZW models. Moreover, the complexities of the discovered equations are still
kept high as in non-integer columns case.

Hence, we restrict the nesting behavior of the "square" operator to search for the most straightforward
representation while still fitting the data well. The result for 100 theories with 30% is shown in
Section 5.
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Percentage 100 Theories 200 Theories 300 Theories

No integer columns

10% 10.470450 (14) 3.650134 (14) 0.468137 (19)

30% 0.304537 (23) 19.525989 (14) 1.892862e-01 (19)

50% 4.238845 (23) 20.04488 (14) 15.406462 (14)

Integer columns

10% inf (20) inf (17) 24.646230 (11)

30% inf (20) 21.91397 (11) 20.314145 (11)

50% inf (12) 20.10332 (11) inf (12)

Table 4: The score and complexity (in the parentheses) of the output symbolic expressions for the
WZW models.

Percentage 100 Theories 200 Theories 300 Theories

No integer columns

10% 0.001161 0.003779 6.590e-03

30% 3.489e-05 0.000613 0.001219

50% 0.000322 0.000601 0.001057

Integer columns

10% 0.000962 0.004225 0.007488

30% 0.073412 0.374559 0.586004

50% 0.000264 0.001137 0.026394

Table 5: The loss of the output symbolic expressions for the minimal models.
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Percentage 100 Theories 200 Theories 300 Theories

No integer columns

10% 0.170389 (10) 0.980252 (9) 1.141e-01 (13)

30% 1.396000 (31) 0.267731 (34) 1.704845 (25)

50% 0.223155 (30) 3.411225e-01 (24) 3.090698e-01 (28)

Integer columns

10% 0.207430 (12) 0.301836 (11) 0.439275 (11)

30% 0.084315 (23) 0.187518 (5) 0.586004 (13)

50% 0.17722 (31) 0.228162 (25) 0.026394 (32)

Table 6: The score and complexity of the output symbolic expressions for the minimal models.
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