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Abstract

Spectroscopic methods are well-established and widely used tools in analytical1

chemistry. They leverage the interaction between light and matter to extract infor-2

mation about chemical species and their abundances. Application of spectroscopic3

methods is hindered by the need for large datasets and the presence of unknown4

interference. These problems present significant challenges in developing reliable5

machine learning models for spectroscopic gas sensing. In many real-world ap-6

plications, data are scarce, and absorbance signals are often corrupted by noise or7

overlapping spectral features from interfering species, making accurate detection8

and classification difficult. To address these challenges, we apply a set of targeted9

augmentation strategies aimed at improving model robustness and selectivity in gas10

sensing tasks. Specifically, we propose a one-shot learning approach with Voigt11

profile augmentation to handle pressure-induced spectral variations. Additionally,12

we use fictitious augmentations to mitigate the impact of unknown interfering13

species. Furthermore, we apply randomized smoothing to enhance resilience to14

unseen perturbations and domain shifts, promoting consistent performance in noisy,15

real-world conditions. Our models significantly outperform undefended baselines,16

offering a reliable, data-efficient solution for gas detection. Research in this area17

holds significant societal impact, with potential applications in occupational safety18

(detecting hazardous or toxic gas exposure), healthcare (identifying biomarkers19

in exhaled breath), and environmental protection (monitoring air pollutants and20

greenhouse gases). Code and models are available at .21

1 Introduction22

Spectroscopic gas sensing has the potential to impact many lives through applications in safety, health,23

and the environment [1, 2]. Traditional chemometric techniques like Partial Least Squares (PLS) [3]24

and Independent Component Analysis (ICA) [4] are often ineffective or sub-optimal in extracting25

useful information from spectroscopic data. This led to a plethora of machine learning-based solutions26

to spectroscopic problems[5], ranging from dealing with noise[6], unknown interference[7, 8], and27

unknown reference spectra[9], to addressing low sensitivity and selectivity [10–12].28

However, significant challenges remain in applying machine learning-based spectroscopic solutions29

to real-world scenarios. Models trained on clean laboratory or simulated data often struggle when30

confronted with real-world target data. This study addresses two critical domain shifts that contribute31

to these challenges: variations in pressure and interference, particularly in data-scarce regimes.32

Efforts in literature have attempted to tackle pressure dependence by simulating large datasets for33

multi-class and multi-label classification problems [13, 14]. This is effective but only a viable route34

for a limited number of chemical species that could be accurately simulated. Voigt convolutions35
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have been proposed as a cheap method to account for pressure dependence with limited data [15].36

This approach leads to certified robustness guarantees when coupled with randomized smoothing37

for multi-class classification [16–18]. Lastly, fictitious augmentations were proposed to mitigate38

the effect of unknown interfering species for regression tasks [7]. This study advances the field of39

multi-label spectroscopic mixture classification by tackling three pivotal questions: (1) How can40

models be trained effectively with minimal or incomplete data? (2) Which augmentation techniques41

are most effective in managing spectral variability and interference? (3) How can model robustness42

be ensured against unforeseen perturbations?43

2 Data44

The study leverages diverse data sources to simulate real-world constraints in a controlled manner.45

The source data represents scenarios with limited availability, a common challenge in spectroscopic46

studies. Through augmentations and mixing operations, this data is transformed into a synthetic47

dataset suitable for model training. Target data is derived from high-quality spectral simulations48

and is restricted to a small number of chemical species. Lastly, experimental data, though scarce, is49

utilized for demonstration purposes. These different types of data are shown in Figure 1 and further50

explained in this section.51

Source data: Using the HAPI software [19] and spectroscopic parameters from HITRAN [20]52

and JPL [21], we generate reference spectra ri for the seven target species at P=0.05 Torr with a53

wavenumber resolution of 0.016 cm−1 (reference spectra are labeled 1-7 in Figure 1). This limited54

amount of information is used as the basis for training many of the models presented to emulate55

data-scarce applications.56

Synthetic data: Reference spectra from the source data are then used to create synthetic data. First57

they are passed into a mixing operator that assumes ideal Beer-Lambert blending behavior (i.e. ,58

Amixture = −ln[I/I0] = ΣiciriL where mixture absorbance can be summed linearly by the molar59

contributions of the reference absorbances for a given path length L, mole fraction ci and species60

ri ). Random mixtures are generated such that each species contributes a minimum of 1% to the61

total absorbance, approximating the experimental detection limit. To improve generalization, we use62

fictitious augmentations (flip, mirror, dilate) and Voigt profile convolutions [15, 7]. Fictitious augmen-63

tations help manage unknown interference by modifying known spectra, while Voigt convolutions64

simulate spectral variations due to pressure changes.65

Target data: Once again, we leverage the HAPI software [19] and spectroscopic parameters from66

HITRAN [20] and JPL [21], to simulate a clean training dataset. Generated data is of the same67

wavenumber resolution (0.016 cm−1) but now spans a large pressure range P=0.001 - 16 Torr.68

Additionally, interfering species beyond the target species are treated as unknowns. (only appearing69

in the test data - see species 8-12 in Figure 1).70

Experimental data: A limited set of 30 experimental spectra from a THz microelectronics spec-71

trometer were used to test the proposed models [13, 14]. The data consist of 5 mixture spectra72

(with CH3CN as an unknown interferent), and the remaining 25 are pure spectra at varying pressure73

conditions. This dataset serves as a demonstration; however, a larger dataset is required to draw74

robust conclusions.75

3 Models76

For the sake of fair comparison, an architecture similar to that presented in TSMC-net [14] is used77

as a base classifier for all experiments. Only the last layer was altered to convert the problem from78

a multi-class classification (via label powerset conversion) to a multi-label classification and the79

rest of the 1D CNN was kept the same. Figure 2 shows how the base classifier fθ can be converted80

to a robust classifier g by randomized smoothing based on perturbations sampled from p(ϵ) (i.e. ,81

g(x) = argmaxk∈C Eϵ∼p(ϵ)[fθ(x+ϵ)k]). It is important to note that in this work, the augmentations82

used for training the base classifier are consistently aligned with the perturbations applied during83

randomized smoothing.84
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Figure 1: Data sources used in this study. Source data emulates real life conditions of data scarcity at a
single pressure. The normalized spectra of species considered are shown where (1-7) represent target
species and (8-12) represent interfering species that are presumed unknown at training. Synthetic
data is then generated from the source data by augmentations and a mixing operator. On the other
hand, target data comes from the HITRAN and JPL databases which rely on experimentally fitted
parameters to simulate clean mixture spectra at a given temperature and pressure. Finally, the
experimental apparatus used to generate THz spectra for demonstration is shown (reproduced from
[13]).

Figure 2: Workflow diagram of this study. Reference spectra denoted as ri are used to create synthetic
data to train the base classifier fθ. At test time, a query mixture spectrum x is obtained from an
experiment or a high-quality simulation software. The mixture spectrum is perturbed N number of
times by fictitious and Voigt augmentations and then passed to the base classifier. A majority vote is
then taken to smoothen the decision boundary and give a robust prediction of dangerous toxic gasses.

4 Results85

Models are evaluated using metrics such as accuracy, F1-score, and precision with a test dataset of86

1,640 mixture observations containing up to 12 VOCs, across 164 pressure conditions. In interference-87

free conditions, the Baseline model, trained on both source and target data, achieved 99% accuracy. If88
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trained on source data only, the Baseline model achieved 77% accuracy. The Baseline + Voigt model,89

which used Voigt convolutions, reached 87% accuracy, while the Baseline + Voigt (V) + Randomized90

Smooting (RS) model, incorporating additional augmentations and randomized smoothing, improved91

accuracy to 92%.92

For classification under interference, the Baseline model achieved 76% accuracy. The Baseline +93

FA model, using fictitious augmentations, improved to 92%. If trained using source data only, the94

Baseline model showed 69% accuracy, and the Baseline + Voigt model reached 70%. The Baseline95

+ Voigt + Fictitious Augmentations (FA) model achieved 83% accuracy, with the Baseline + Voigt96

(V) + Fictitious Augmentations (FA) + Randomized Smoothing (RS) model improving to 88%.97

All results are summarized in Table 1.

Table 1: Summary of test results on target (simulated) data. V refers to Voigt convolutions, FA refers
to fictitious augmentations, and RS refers to randomized smoothing.

Models Trained on Interference Accuracy F1-score Precision
Baseline target No 0.99 1.00 0.99
Baseline source No 0.77 0.78 0.83

Baseline + V source No 0.87 0.91 0.83
Baseline + V + RS source No 0.92 0.98 0.93

Baseline target Yes 0.76 0.79 0.79
Baseline + FA target Yes 0.92 0.91 0.94

Baseline source Yes 0.69 0.75 0.73
Baseline + V source Yes 0.70 0.75 0.75

Baseline + V + FA source Yes 0.83 0.83 0.86
Baseline + V + FA + RS source Yes 0.88 0.89 0.90

98

The classification models were evaluated using experimental data that included 25 pure components99

and 5 mixtures. The Baseline model, trained on both sources and targets, achieved 83% accuracy100

in interference-free conditions. When trained on source data only, the Baseline model had 64%101

accuracy, while the Baseline + Voigt model reached 72%. The Baseline + V + RS model improved102

to 77% accuracy. In classification under interference, the Baseline model achieved 83% accuracy.103

The Baseline + FA model improved to 90%. When trained on source data only, the Baseline model104

showed 63% accuracy, with the Baseline + V model reaching 83%. The Baseline + FA model105

achieved 90%, and the Baseline + V + FA + RS model improved to 93%. Results are summarized in106

Table 2. All experiments were ran on a single GPU in <30 minutes.107

Table 2: Summary of test results on experimental data combining 25 pure components and 5 mixtures.
V refers to Voigt convolutions, FA refers to fictitious augmentations, and RS refers to randomized
smoothing.

Models Trained on Interference Accuracy F1-score Precision
Baseline target No 0.83 0.91 0.86
Baseline source No 0.64 0.72 0.67

Baseline + V source No 0.72 0.78 0.76
Baseline + V + RS source No 0.77 0.83 0.80

Baseline target Yes 0.83 0.83 0.83
Baseline + FA target Yes 0.90 0.88 0.92

Baseline source Yes 0.63 0.65 0.64
Baseline + V source Yes 0.83 0.87 0.87

Baseline + V + FA source Yes 0.90 0.91 0.92
Baseline + V + FA + RS source Yes 0.93 0.95 0.95

5 Conclusion108

This study demonstrated effective spectroscopic multi-label classification training techniques under109

limited data availability. We showed that given a single reference spectrum per target species, one110

could train a model via Voigt augmentations with accuracy approaching that of a model trained111

on extensive pressure-dependant data. Given that many applications could encounter complex gas112

mixtures, we emphasized the importance of defending against unknown interfering species. Since113
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many gaps remain in spectroscopic databases, techniques like the ones presented here could help114

accelerate adoption of machine learning based spectroscopic solutions in the real world.115
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