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Abstract

We present a novel application of conditional diffusion models for creating syn-
thetic images of galaxies based on their physical properties. While previous work
has focused on conditioning on a single parameter, we demonstrate that diffusion
models can generate galaxies conditioned on multiple physical properties simul-
taneously, allowing us to explore how combinations of these properties correlate
with galaxy appearance. Our model, trained on data from the Sloan Digital Sky
Survey (SDSS), generates galaxy images conditioned on redshift, stellar mass, star
formation rate, and gas-phase metallicity. Notably, the model captures expected as-
trophysical trends, such as the relationship between metallicity and galaxy color or
morphology. However, the generated images disagree with SDSS validation images
as measured by Gini coefficients, M20 coefficients, and Concentration-Asymmetry-
Smoothness statistics, which is consistent with systematic underprediction of
diffuse flux. While modern generative models are capable of producing realistic
images, applying these models to astrophysics may still prove challenging.

1 Introduction

Artificial intelligence has revolutionized astrophysics, but the subfield of galaxy formation and
evolution faces a unique challenge: while data is plentiful, the connection between a galaxy’s physical
properties and its observable characteristics remains poorly understood. Due to the complex and
diverse range of galaxy appearances, we are unable to generate realistic-looking galaxies based on
their actual properties, despite our knowledge of galaxy physics. Even simulations can struggle
to match the realistic morphologies of all galaxy populations. This limitation hinders our ability
to connect the underlying physics of galaxies with their detailed morphologies, impeding a vital
component of our understanding of galaxy evolution.

Recent advances in generative machine learning offer promising solutions for understanding galaxy
properties and their astrophysical traits. Methods including CNNs [17, 15], VAEs [14], and GANs
[6] have been applied to generate galaxy images [8, 16, 30, 3, 12]. More recently, researchers have
turned to diffusion models [24, 18], which have been shown to demonstrate superior image sample
quality [5]. In particular, [18] showed that conditional diffusion models can generate galaxy images
at a specified redshift.
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Figure 1: Univariate and bivariate distributions of SDSS galaxy properties and r-band magnitudes.
The 16th, 50th, and 84th percentiles of the univariate distributions are labeled with dashed lines.

We propose a generative model that can produce realistic galaxy images conditioned on physical
parameters by taking a standard diffusion model and giving it embedded knowledge of observed
galaxy properties. The specific physical parameters we use are fundamentally linked to galaxy
evolution: stellar mass indicates the total number of stars, star formation rate measures ongoing
stellar birth, and metallicity traces chemical enrichment history. Successfully generating images
conditioned on these properties would demonstrate that our model captures the complex relationships
between galaxy physics and appearance.

In the following sections, we describe our data (§2), detail our methodology (§3), present results
evaluating the model’s effectiveness (§4), and discuss the limitations and future directions of our
work (§5).

2 Data

We generate artificial galaxies that resemble those from the Sloan Digital Sky Survey [29, 1] Main
Galaxy Sample (r < 17.78; [27]). Starting with the SDSS galSpecExtra catalog of spectroscop-
ically confirmed galaxies [13, 2, 28, 23], we remove objects with artificially low gas metallicities
(Zgas < 0), stellar masses (M⋆ < M⊙), and star formation rates (ψ < 10−10M⊙ yr−1). We also
discard objects with model magnitudes brighter than r < 16 (see Figure 1). We also remove galaxies
classified as LINERs and AGN, since they may have biased properties. To save compute resources,
we draw a random 20% of the remaining sample (21,364 galaxies). Due to GPU memory constraints
during diffusion model inference, we reserve 512 samples for validation and train on the rest. In
Figure 1, we show distributions of the redshifts z and physical properties (M⋆, ψ, Zgas) of the galaxies
in our total sample.

We download galaxy image cutouts in JPG format from the SDSS SkyServer. Each 128 × 128
gri-band image cutout is centered on the galaxy and delivered at the native SDSS pixel scale
(0.396′′ pixel−1). We remove sky background flux from the images by creating a segmentation map
using the statmorph Python package [20] and then subtracting the median value from each color
channel. This sky-subtraction process ensures that there is no extra background flux, which makes
training easier for our generative machine learning pipeline. Sky background subtraction is also
a standard practice in astronomical image processing. While this preprocessing could potentially
affect the generation of low surface brightness features, it ensures our model learns intrinsic galaxy
properties rather than observational artifacts. The systematic underprediction of diffuse flux noted in
Section 5 could potentially be attributed, at least in part, to this preprocessing step. This highlights an
important trade-off between using clean training data and capturing extended low-surface-brightness
features.
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Figure 2: Architecture of the U-Net in our conditional diffusion model. “DownSamp” and “UpSamp”
blocks represent downsampling and upsampling layers, respectively. Numbers indicate output
channels per layer. The central yellow “+” combines the 512-dimensional outputs from the physical
property and time neural networks, feeding the result to all U-Net layers.

3 Methodology
Conditional Diffusion Models. Diffusion models are able to generate highly realistic images based
on a training data set [25, 9]. Beginning with a image of noise, diffusion models iteratively subtract
Gaussian-distributed noise until an image emerges after T iterations. A U-Net [21] learns to predict
how much noise remains at every iteration t ∈ {0, . . . , T}. This trajectory can also be expressed as
the solution to a reverse-iteration stochastic differential equation that depends only on the score of the
data distribution [26].

The U-Net can adjust its predictions using information other than t [10]. We optimize the U-Net to
predict noise as a function of galaxy properties (z,M⋆, ψ, Zgas) and iteration step t. Because the
model is now conditioned on physical properties of galaxies, we refer to our approach as a conditional
diffusion model. We also normalize galaxy properties to zero mean and unit variance. Figure 2 shows
the U-Net architecture in our conditional diffusion model, where the “Time Network” incorporates the
denoising iteration t, and the “Phys. Property Network” conditions on galaxy properties. The “Time
Network” processes the denoising iteration t through two linear layers of width 512. Similarly, the
“Physical Property Network” processes the normalized galaxy properties (z,M⋆, ψ, Zgas) through
one linear layer of width 512. The outputs of both networks are added together and fed to all U-Net
layers.

Our conditioning approach uses separate fully-connected neural networks to process both diffusion
model timesteps and physical properties, combining the outputs of these networks through simple
addition. Although more complex conditioning strategies exist, our results demonstrate that this
simple approach successfully captures key astrophysical trends in the generated images.

Optimization. We train our conditional diffusion model against the L1 loss using the Adam
optimizer with no weight decay.1 Gaussian noise is added according to a linear variance schedule [9].
We choose T = 1000 iterations for the denoising procedure. We train for 100 epochs with a batch
size of 128; training takes 5.5 hours when parallelized across four NVIDIA V100 GPUs.

4 Results
Conditional Generation of Galaxy Images. We are able to generate realistic images of galaxies
conditioned on their physical properties. From the SDSS validation set, we sample galaxies with
different gas-phase metallicities (e.g., left panel of Figure 3). Then, we condition our trained diffusion

1We find that L1 loss produces more realistic galaxy images than the mean squared error loss. Other works
have explored this topic in more detail [22]. We also find that non-zero weight decay produces poor results.
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Figure 3: SDSS validation images (left) and generated images (right). Both sets of images are
selected to have the same gas-phase metallicities, and are shown in increasing order of metallicity.

Figure 4: Gini and M20 coefficients of generated (red) and validation (black) images.

model to generate galaxy images corresponding to the same metallicites (shown in right panel of
Figure 3). The generated images appear realistic: the galaxies exhibit spiral arms, star-forming
regions bulges, and bars, and sometimes the generated image cutouts also feature other objects that
resemble foreground stars or companion galaxies. However, we note the generated images contain
less noise than the validation images. We find similar results when conditioning on other galaxy
properties like the specific star formation rate (sSFR ≡ ψ/M⋆).

Morphology Metrics. We quantify the morphological similarity between generated and validation
images. Using statmorph [20], we compute the Gini and M20 coefficients [19], as well as concen-
tration, asymmetry, and smoothness (known as the CAS statistics; [4]). These morphology metrics
are commonly used in astronomy to describe galaxy shapes [11].

In Figure 4, we present a comparison of the Gini and M20 coefficients of the generated and validation
images. The Gini coefficient measures how equitably light is distributed throughout a galaxy, such
that a high Gini coefficient implies that most of the light resides in a small number of pixels. The
M20 coefficient measures the spatial spread of the brightest 20% of a galaxy’s pixels. We conduct a
Kolmogorov-Smirnov (KS) test to determine whether generated images are drawn from the same
sample as validation images; we find p = 5 × 10−3 for Gini coefficients, and p ≪ 10−5 for M20

coefficients. This indicates that the generated and validation images are from distinct samples.

In Figure 5, we show CAS statistics for the generated and validation images. Concentration quantifies
how concentrated the light of a galaxy is towards its center, asymmetry measures the degree to which
a galaxy image is not rotationally symmetric, and smoothness indicates the presence of small-scale
structures relative to the underlying large-scale structure (unintuitively, a high smoothness value
implies a galaxy that is not smooth). Like we did for our Gini andM20 coefficients above, we conduct
a KS test and find p = 2 × 10−4 for concentration, p = 10−3 for asymmetry, and p ≪ 10−5 for
smoothness. Again, this shows that the generated and validation images are drawn from distinct
samples.

4



Figure 5: CAS statistics of generated (red) and validation (black) images.

5 Discussion

We have developed a conditional diffusion model capable of generating SDSS-like galaxy images
conditioned on redshift, stellar mass, star formation rate, and gas-phase metallicity. Our generated
images align with astrophysical intuition and exhibit the expected trends (e.g., lower-metallicity
galaxies are bluer in Figure 3). However, when measured against Gini-M20 coefficients and CAS
statistics, our conditional diffusion model results disagree with SDSS validation images.

In Section 4, we report KS statistics with p-values that are order 10−3 at best and are several orders
of magnitude smaller at worst. This reflects a poor alignment between generated and validation
images for the morphological metrics we select. We theorize that the generated galaxies may be
missing diffuse light that can be seen in the outskirts of some real SDSS galaxy images (see, e.g.,
Figure 3). If low surface-brightness emission is systematically absent from generated images, then
we expect M20 to be biased low and concentration and smoothness to be biased high (see Figures 4
and 5). In the future, we can address this issue by training and validating on larger galaxy samples,
tweaking our model architecture and optimization hyperparameters, and benchmarking on a larger
set of morphology metrics used throughout astronomy and computer vision [7].
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