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Abstract

Accurate prediction for chaotic systems is challenging due to their intrinsic sensi-
tivity to initial condition perturbations. Instead, recent advances have been focused
on forecasting models that produce trajectories preserving invariant statistics over
a long horizon. However, data-driven methods are prone to generate unbounded
trajectories, resulting in invalid statistics evaluation. Despite the sensitive nature of
chaos, many chaotic systems show dissipative behaviors, meaning that they will
enter a bounded invariant set eventually. In this paper, we propose a novel neural
network architecture that preserves dissipativity by leveraging control-theoretic
stability notions and constructing a projection layer that ensures trajectory bound-
edness. Additionally, the trained network also learns a Lyapunov function that
governs dissipativity, along with an outer estimate of the attractor. We demon-
strate the capability of our model in producing bounded long-horizon forecasts and
characterizing the attractor using a truncated Kuramoto–Sivashinsky system.

1 Introduction

Chaos, characterized by exponential divergence after infinitesimal initial perturbations, is ubiquitous
in a variety of complex dynamical systems including climate models [1] and turbulence in fluids [2, 3].
The unstable nature of chaotic systems makes it challenging to accurately predict their trajectories
using data-driven methods. For specific models such as quadratic regression, theoretical limitations
have been explored in [4], where the authors found these models could lead to finite time blowup or
unstable statistical solutions, rendering the prediction unreliable. For popular time-series models, it
was shown in [5] that training a recurrent neural network (RNN) for chaotic system prediction can
lead to unbounded gradients.

Despite intrinsic stability, many chaotic systems are dissipative [6], i.e., their trajectories will converge
to a bounded positively invariant set, which is also known as a strange attractor. For dissipative
chaotic systems, although accurate long-term prediction is still challenging, recent progress has been
made in applying deep learning to produce a dynamics emulator that preserves invariant statistics [7].
Note that in order to obtain meaningful statistics, it is often required to roll out the model prediction
for a long horizon, where the model will traverse almost every state possible on the attractor. Without
any formal boundedness guarantees, it has been observed that deep learning models are prone to
the risk of stepping on a state not seen during training and experiencing finite-time blowup [8, 9],
which reduces the length of reliable forecast. To address this issue, noise-inspired regularization has
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shown empirical success in promoting stability [10]. Another approach based on neural operator
architectures is proposed in [11], which explicitly alters the flow of the learned dynamics emulator in
a pre-specified region of the state space to ensure dissipativity.

In this paper, we propose a novel neural network architecture that ensures the learned dynamics
emulator always produces a trajectory that converges to an invariant set characterized by learned
parameters. We derive stability conditions that guarantee dissipativity leveraging control-theoretic
perspectives, and enforce these conditions through an explicit projection layer in our model. In
numerical simulations including Lorenz 63 and a set of truncated ordinary differential equations
(ODEs) obtained from the Kuramoto–Sivashinsky equation, our model consistently produces bounded
trajectories that converge to the strange attractor over long forecast horizons. Furthermore, the learned
invariant set provides an overestimation of the strange attractor, which is notoriously difficult to
characterize due to its complex geometry.

2 Problem Formulation

Consider a chaotic dynamical system described as a finite-dimensional ODE,
ẋ(t) = f(x(t)), (1)

where x(t) ∈ Rn is a n-dimensional vector which represents the state of the dynamical system at time
t. Due to the chaotic nature of such systems, namely exponential divergence after an infinitesimal
perturbation in the initial condition, accurate prediction is near impossible [12]. Instead, the objective
is to construct a neural network dynamics emulator f̂ : Rn → Rn, such that by solving the initial
value problem

˙̂x(t) = f̂(x(t)), x̂(0) = x(0) (2)
from a given initial condition x(0), the long-term solution x̂(t), t ∈ [0, T ] approximates the true
solution x(t) well in terms of matching statistical properties. However, it has been observed in the
literature [4] that emulators learned purely from trajectory data can generate unbounded trajectories
from certain initial conditions, which makes statistical property evaluation infeasible.

In this paper, we aim to develop neural network-based models that are guaranteed to generate bounded
solutions for the initial value problem (2). In Section 3, we formally introduce the definition of
dissipativity and derive control-theoretic stability conditions for it. In Section 4, we propose a novel
NN emulator model that incorporates such conditions and guarantees trajectory boundedness.

3 Algebraic Dissipativity Conditions and Attractor Estimation

Definition 1. We say that the system (1) is dissipative if there exists a bounded and positively invariant
set M ⊂ Rn such that limt→∞ dist(x(t),M) = 0, where dist(x(t),M) = infy∈M ∥x(t) − y∥. In
other words, every trajectory of the system will converge to M asymptotically, and stays within M
once it enters. M is said to be globally asymptotically stable.

Note that in our definition, dissipativity requires both the existence of a positively invariant set and the
asymptotic convergence of all trajectories to this set. In general, choices of such an invariant set may
not be unique, and the smallest one is the strange attractor. However, characterizing the attractor for a
known chaotic system is challenging due to its complicated geometry [13]. Instead of recovering the
attractor empirically as attempted in [11], we focus on characterizing invariant sets that are level sets
of an energy-like function. By leveraging control-theoretic stability notions, we derive conditions for
positive invariance and asymptotic stability of a level set in Proposition 1 and 2, respectively.
Proposition 1 (invariant level set). For a dynamical system in (1), suppose there is a continuously
differentiable scalar-valued function V : Rn → R and a constant c > 0, such that

∀x ∈ {x ∈ Rn : V (x) > c}, V̇ (x) ≤ 0.

Then the level set M(c) = {x : V (x) ≤ c} is a positively invariant set for the system (1).
Proposition 2 (asymptotic stability). For a dynamical system in (1), suppose there is a lower-bounded
continuously differentiable scalar-valued function V : Rn → R and a constant c > 0, such that

(1) ∀x ∈ {x ∈ Rn : V (x) > c}, V̇ (x) < 0; (2) V is radially unbounded.

Then the level set M(c) = {x : V (x) ≤ c} is globally asymptotically stable.
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Theorem 1. Suppose there is a lower-bounded radially unbounded C1 function V : Rn → R and a
constant c > 0 such that for the dynamical system in (1),

∀x ∈ Rn, V̇ (x(t)) + V (x)− c ≤ 0.1 (3)

Then the system (1) is dissipative and M(c) is globally asymptotically stable. V is also known as a
Lyapunov function.

4 Methodology

In Section 3, we have derived stability conditions that ensure dissipativity for a system in (1). Now
we propose our architecture that learns the Lyapunov function V and enforces the conditions in
Theorem 1 through the construction of a projection layer. The overall structure is illustrated below:

Figure 1: An illustration of the proposed neural network model.

Our proposed model consists of three learnable components illustrated in red: a multilayer perceptron
(MLP) f̂ that approximates the true nonlinear dynamics f on the right-hand side of (1); a quadratic
function V (x) that serves as a Lyapunov function with learnable parameters Q and x0; and a level set
parameter c > 0. Using these three components and the gradient information ∂V/∂x, we construct a
“stability projection” layer that outputs a predicted dynamics emulator f∗(x) ∈ Rn which guarantees
dissipativity of its corresponding dynamics ẋ = f∗(x).2

4.1 The Stability Projection Layer

As discussed in Section 3, given a Lyapunov function satisfying the conditions in Theorem 1,
asymptotic convergence to the level set M(c) can be established for a dynamical system if it satisfies
the condition (3). Intuitively, this condition informs a subspace for the vector field f(x) in which
the forward dynamics will be dissipative. The stability projection layer is designed to project any
dynamics emulator, in this case our MLP f̂(x), into such a subspace to ensure dissipativity.

More specifically, given an input x ∈ Rn, the stability projection layer output f∗(x) is chosen as the
vector in the subspace of Rn confined by (3) that is closest to the emulator f̂(x) in l2 distance, i.e.,

f∗(x) = argminf(x)∥f(x)− f̂(x)∥2 subject to
∂V

∂x

T

f(x) + V (x)− c ≤ 0 (4)

Since the above optimization problem has a quadratic loss and a linear constraint, similar to the
approach in [14], an explicit solution can be found and computed using ReLU activation,

f∗(x) = f̂(x)− ∂V

∂x

T ReLU
(

∂V
∂x f̂(x) + V (x)− c

)
∥∂V

∂x ∥2
(5)

Note that the stability projection guarantees dissipativity and asymptotic convergence to any invariant
level set M(c) defined by V (x) and c > 0. In what follows, we will discuss the training procedure

1See Appendix B.1 for remarks on the difference between the conditions in Proposition 1, 2 and Theorem 1.
2See Appendix B.2 for discussion on the choices of V (x) parameterization and f̂ architecture.
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and how to search for a pair of V and c such that the level set M(c) forms a tight outer estimation for
the attractor.

4.2 Training Loss with Invariant Set Volume Regularization

We assume the training dataset consists of trajectory data evenly sampled at h [sec] apart. Unlike
[11, 7], we do not assume the trajectories in the training set are already inside the attractor, which
allows for more flexibility when learning unknown chaotic systems and the transition period before it
reaches an invariant statistics is unknown. During training, we consider a multi-step setting, where
we roll out the predicted model for T steps, each step sampled at h [sec] using a numerical integration
scheme. More specifically, given an initial condition chosen from the training dataset x(i)

0 , we forward
simulate the ODE ˙̂x(i) = f∗(x̂(i)) with x̂(i)(0) = x

(i)
0 and obtain sampled states x̂(i)

k = x̂(i)(kh) at
k = 1, 2, ..., T . The trajectory prediction loss is defined as the MSE between the predicted sequence
(x̂

(i)
k )Tk=1 and the ground truth sequence (x

(i)
k )Tk=1.

As discussed earlier, the stability projection layer guarantees dissipativity along with convergence
to an invariant level set M(c), however, it does not inform how to choose an appropriate level set
that characterizes the attractor. Since we are using a quadratic Lyapunov function V (x), our goal
is to find a pair of V (x) and c such that the resulting ellipsoid M(c) is a tight outer estimation of
the actual strange attractor. Towards this objective, we use the volume of the ellipsoid M(c) as the
regularization loss to encourage learning as tight of an attractor outer estimation as possible while
abiding by the dissipativity of the flow map. Combining the prediction and regularization loss, we
have the following training loss with a weight hyperparameter λ > 0 for balancing the regularization
terms:

Loss =
1

NT

N∑
i=1

T∑
k=1

∥x(i)
k − x̂

(i)
k ∥22 + λVol(M(c)), Vol(M(c)) =

πn/2

Γ
(
n
2 + 1

)√ cn

det(Q)
(6)

5 Numerical Experiments

We demonstrate the effectiveness of our proposed approach through a long-horizon forecast example
on an 8th-order truncated Kuramoto–Sivashinsky system of ODEs [15]. The training dataset consists
of 4 different trajectories of 500 steps, sampled at 0.01 [sec] using the 4th-order Runge–Kutta (RK4)
method. A single-step prediction setting is used during training, and both a vanilla MLP and our
proposed method are trained on the same dataset.

(a) Trajectory grows unbounded using a
vanilla MLP (no projection).

(b) Bounded trajectory generated by our model along
with an ellipsoidal outer estimation for the attractor.

Figure 2: Vanilla MLP model generates unbounded trajectory while our model ensures stability and
learns an attractor characterization. (“GT” is ground truth, and “fstar” refers to predicted trajectory)

During testing, we roll out both models using the RK4 method with a sampling rate of 0.01 [sec]
over 10,000 steps. It is observed in Figure 2 that the vanilla MLP model experiences finite time
blowup while our proposed model not only generates a bounded trajectory that converges to the

4



strange attractor but also successfully learns an invariant level set that encompasses the attractor.
More numerical results can be found in Appendix C. We observe successful numerical results for the
Lorenz 63 system as well, which are summarized in Appendix D.
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A Proof for Theoretical Results

Proof for Proposition 1. Let x(0) ∈ M(c), suppose there exists t > 0 such that x(t0) /∈ M(c),
which implies that V (x(0)) ≤ c < V (x(t0)). Since V (x(t)) is continuously differentiable in t,
by the intermediate value theorem, we can find some t ∈ [0, t0) such that V (x(t0)) = c, denote
S = {t : V (x(t)) = c, t ∈ [0, t0)}. Since ∀t ∈ S, t < t0, supS ≤ t0. Suppose supS = t0, then we
can construct a sequence (tk)k∈N such that tk → supS as k → ∞. By continuity, V (x(supS)) = c
which contradicts V (x(t0)) > c. Therefore, supS < t0. Now by the mean value theorem, there exists
t1 ∈ (supS, t0) such that V (x(t1)) > c and V̇ (x(t1)) = (V (x(t0))−V (x(supS)))/(t0−supS) >
0, which contradicts the assumed condition. Therefore, ∀t > 0, we have V (x(t)) ∈ M(c) as long as
x(0) ∈ M(c), i.e., M(c) is indeed a positively invariant set.

Proof for Proposition 2. Since the condition here is stronger than the one stated in Proposition 1,
M(c) is a positively invariant set. Therefore, it suffices to consider a trajectory that starts outside
M(c). Suppose there exists a trajectory x(t) such that ∀t ∈ [0,∞), V (x(t)) > c, then V̇ (x(t)) < 0
and V (x(t)) is monotonically decreasing over time. Since V (x(t)) is lower bounded, V (x(t)) →
a ≥ infx V (x) as t → ∞. Suppose a > c, i.e., dist(x(t),M(c)) = infy∈M(c) ∥y − x(t)∥ ̸→ 0 as
t → ∞.

Since V is radially unbounded, for any α > 0, we can find rα such that V (x) > α for all
∥x∥ > rα. Therefore, any level set of V is bounded as {x : V (x) ≤ α} ⊂ B(rα). Note that
V (x(t)) ∈ [a, V (x(0))] for all t ∈ [0,∞) because V (x(t)) is monotonically decreasing. Since V (x)
is continuous, the pre-image S = {x : V (x) ∈ [a, V (x(0))] is a closed set. Additionally, S is
bounded because S ⊂ {x : V (x) ≤ α} ⊂ B(rV (x(0))), which implies S is compact.

Since V̇ (x) is continuous and V̇ (x) < 0 for all x ∈ S, there is γ > 0 such that maxx∈S V̇ (x) ≤ −γ,
which implies maxt∈[0,∞) V̇ (x(t)) ≤ max∥x∥<rx(0)

V̇ (x) ≤ −γ. This contradicts the fact that
V (x(t)) ≥ a > −∞ for all t ∈ [0,∞) since

V (x(t)) = V (x(0)) +

∫ t

0

V̇ (x(τ))dτ ≤ V (x(0))− γt.

Proof for Theorem 1. The condition (3) implies that ∀x ∈ Rn such that V (x) > c, V̇ (x(t)) ≤
−(V (x)− c) < 0. Therefore, by Proposition (1) and 2, the level set M(c) is both globally asymptot-
ically stable and positively invariant.

B Remarks in Footnotes

B.1 Computational Tractable Conditions

In Proposition 1 and 2, by using the level set notion, we have greatly simplified the conditions of
finding an invariant set that is also globally asymptotically stable. However, verifying the above
conditions computationally is not trivial because it’s generally difficult to enforce a condition over part
of the state space. Inspired by s-procedure in sum-of-squares programming [16], at the cost of using
a slightly stronger condition in our main theorem to enforce dissipativity, we obtain a much more
tractable stability condition. Since condition (3) only relies on V (x), ∂V/∂x, f(x) computation, it
makes the explicit projection layer construction possible, which leads to dissipativity guarantee for
our proposed model as discussed in Section 4.

B.2 Choices for Emulator Architecture and Lyapunov function

Note that we choose to parameterize the Lyapunov function V as a quadratic function for simplicity,
but the framework can accommodate any function satisfying the requirements stated in Theorem 1.
Additionally, the framework can be adapted to function approximators that are more expressive than
MLPs. In our experiments with finite-dimensional ODEs, we found MLPs sufficient for producing
reliable long-horizon forecast, which aligns with the findings in [11].
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C Additional Numerical Results for the truncated KS ODEs

In Figure 3, it is observed that the predicted trajectory shares a similar energy level as the ground
truth trajectory. Additionally, the level set value is a reasonably tight upper bound on the ground truth
trajectory’s energy level after it enters the strange attractor.

Figure 3: Lyapunov function V (x(t)) time history and level set value c.

In Figure 4, it is observed that the average energy spectrum of the predicted trajectory matches with
the ground truth trajectory well. Despite the discrepancies between the energy spectra for dimensions
1 and 3, it is important to note that our method is not intended to improve the prediction of statistical
properties. Unlike [7], our approach does not incorporate explicit incentives for matching statistical
properties during the training process.

Figure 4: Energy spectrum amongst different dimensions: the first plot on the left is the average
spectrum over all 8 dimensions; from the second to the fifth plot (from the left), we present the
spectrum for the first four dimensions of the 8th-order system.

D Numerical Example: Learning Lorenz 63

In addition to the truncated KS ODEs example presented in Section 5, we now present numerical
results on the Lorenz 63 system. Since it is a third-order ODE system, it is easier to visualize the
trajectory in state space and its flow map.

In Figure 5, it is observed that our predicted trajectory matches with the ground-truth trajectory,
and our method is able to empirically recover the strange attractor similar to [11]. In Figure 6, it is
observed that our model learns a flow map that forces the trajectory to enter the invariant set and
stays within that level set. Additionally, the flow further away from the ellipsoid center points more
inward compared to the real system flow, which is likely caused by enforcing a stronger hence more
conservative condition in (3). However, after the transient phase, we observe very similar flows
within the invariant set.
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Figure 5: State trajectories from a randomized initial condition and the learned level set M(c) from
different views of the 3D space.

Figure 6: Comparison between the flow maps of the true system f and our emulator model f∗.

Similar to the truncated KS example, we also present the energy level time history and energy
spectrum, plotted in Figure 7 and 8, respectively. The energy level of the predicted trajectory matches
very well with that of the ground truth trajectory. We observe some discrepancies between the energy
spectrums in Figure 8, similar to the discussion in the KS case, we will leave improving statistical
invariance for future investigation.

Figure 7: Lyapunov function V (x(t)) time history and level set value c
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Figure 8: Energy spectrum amongst different dimensions: the first plot on the left is the average
spectrum over all 3 dimensions; from the second to the fourth plot (from the left), we present spectrum
for each of the three dimensions.
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