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Abstract

Encoding and predicting physical measurements such as temperature or carbon
dioxide is instrumental to many high-stakes challenges – including climate change.
Yet, all recent advances solely assess models’ performances at a global scale.
But while models’ predictions are improving on average over the entire globe,
performances on sub-groups such as islands or coastal areas are left uncharted.
To ensure safe deployment of those models, we thus introduce FAIR-EARTH, a
fine-grained evaluation suite made of diverse and high-resolution dataset. Our
findings are striking–current methods produce highly biased predictions towards
specific geospatial locations. The specifics of the biases vary based on the data
modality and hyper-parameters of the models. Hence, we hope that FAIR-EARTH
will enable future research to design solutions aware of those per-group biases.

1 Introduction
Our planet exhibits phenomena that operate across a wide range of spatial and temporal scales, from
local microclimates with hourly fluctuations, to global climate patterns that evolve over decades.
Capturing those dynamics is crucial for climate change monitoring and mitigation. Existing methods
include observation-based networks on the ground and sea (18), satellite-based remote sensing
(21), and more recently, computer-based climate simulations (10). However, all aforementioned
approaches suffer from some combination of discretization error, modeling error, data inconsistency,
and resource-intensive inference (1). By being able to learn nonparametric models from arbitrarily
high-resolution, multi-modal data, AI–and in particular Implicit Neural Representations (INRs)
(20)–offer an attractive and efficient alternative. The use of INR to learn the underlying physical
dynamics of geospatial data has seen a rapid increase in interest (6). Such methods learn to encode
the underlying generative process and representation of the data through an implicit function mapping
coordinates to data realisations–through a Deep Neural Network (DNN) (11).

However, all recent INR advancements emerge from improving average test performances, i.e., by
assessing predictions’ quality over the entire Earth. This begs the following question:

How reliable are current state-of-the-art solution when looking at specific sub-groups such as coastal
land or islands?

As INRs are being deployed increasingly for climate monitoring, it is of utmost importance to
develop specialized evaluation suites to quantify the fairness of current solutions. This of course is
practically motivated: for tasks like natural disaster risk assessment where consequences are severe,
there is a natural emphasis on improving worst-case performance rather than average-case metrics
(15). To ensure that practitioners both in climate and AI research can better assess their model’s
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Figure 1: Heatmap of the spatial distribution of approximation error using an Implicit Neural
Representation to model land-sea data of the Earth. Clear bias against islands is observed where
the error magnitude is significantly higher. Further details and plots: Section 4, Table 3.

fairness we propose the first unified and fine-grained evaluation suite, coined FAIR-EARTH. Upon a
rigorous evaluation of state-of-the-art INRs against FAIR-EARTH, we obtain the following striking
observations:

1. “localized” groups such as coasts and islands are left behind (Fig. 1, Table 3)
2. global performance is negatively correlated to island performance (Fig. 2)
3. per-group performance can not be competitive on all sub-groups concurrently (Fig. 10).

The FAIR-EARTH dataset and the accompanying experiments described in this paper represent our
attempt to address these challenges head-on. By providing a common, open-source3 playground for
researchers and practitioners, we aim to accelerate progress in tackling pressing environmental and
societal challenges.

2 Background

The (un)fair impact of solely focusing on improving average test performance has been observed
to be detrimental to sub-group performance within the context of natural image classification tasks
(3; 16). However, to the best of our knowledge, no such assessment has been proposed for INR, and
in particular for INR on Earth observations. Prior to diving into the fairness assessment in Section 3,
we begin with some background on INRs.

Implicit Neural Representations. Throughout our study, we will focus on the latest state-of-the-art
INR model developed by (19). The model introduces a novel integration of SPHERICAL HARMONIC
location embeddings with SirenNets (20), demonstrating consistently superior performance over
earlier location encodings such as GRID and THEORY in various ablation studies (2; 17).

The crux of this procedure lies in decomposition of the underlying signal, e.g., land boundaries,
temperature, as continuous signals on the globe f : (λ, ϕ) 7→ R. Specifically, for well-behaved
functions, e.g., with exponential decay of their eigenvalues, the following decomposition can precisely

3The full codebase and dataset will be released upon completion of the reviewer process
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Table 1: Per sub-group cross-entropy test loss across various spatial resolution of the dataset. We
observe that the bias of the model in missing “island” persists even for high resolution dataset.

RESOLUTION 5000 10000 15000 20000 25000 30000

TOTAL 0.16 ± 0.02 0.13 ± 0.03 0.12 ± 0.03 0.11 ± 0.04 0.10 ± 0.04 0.10 ± 0.04
LAND 0.21 ± 0.03 0.15 ± 0.04 0.14 ± 0.05 0.14 ± 0.05 0.12 ± 0.06 0.16 ± 0.06
SEA 0.11 ± 0.02 0.16 ± 0.02 0.09 ± 0.03 0.08 ± 0.03 0.08 ± 0.03 0.80 ± 0.03
ISLAND 2.74 ± 0.03 3.25 ± 0.49 2.85 ± 0.33 2.66 ± 0.26 2.61 ± 0.20 2.51 ± 0.21
COASTLINE 1.06 ± 0.08 1.00 ± 0.06 0.95 ± 0.05 0.90 ± 0.04 0.82 ± 0.04 0.81 ± 0.05

recover the original signal:

f(λ, ϕ) =

∞∑
l=0

l∑
m=−l

wm
l Y m

l (λ, ϕ), (1)

where Y is the class of spherical harmonic functions as depicted in Fig. 9, w are learnable scalar
weights, and l and m are the degrees and orders of the basis functions Y m

l (in practice, we impose an
upper bound on l, effectively capping the representable frequency). Eq. (1) can easily be seen as a
“linear” network with weight w. INR then extends that formulation by enabling that weighting of
Y m
l (λ, ϕ) to be a nonlinear function (DNN) of l and m; we direct the reader to Appendix A.1 for

further details and theoretical intuition as to why Eq. (1) may exhibit geospatial biases when dealing
with earth observations.

3 The FAIR-EARTH Dataset
We now describe FAIR-EARTH, our evaluation suite enabling localized performance and per-group
performance assessment of INRs. The fairness assessment of current SOTA solutions will be provided
in the following Section 4. This design of FAIR-EARTH is mostly motivated by two core principles.
High-resolution monitoring. The FAIR-EARTH dataset employs a uniform 0.1◦ x 0.1◦ gridding of
the globe, yielding a consistent 1800 x 3600 map size for all variables. We leverage two modalities.
Land-ocean data: Based on (13), this component contains coarse signals like continental landmasses
while also providing high-resolution boundaries for fine-grained signals such as islands and coastlines.
Climate data: Derived from the GRACED2021 (8) and CHELSA (14) datasets, this component
provides an assortment of coarse and ultra-fine-grained signals, as well as high resolution along the
time dimension. This temporal granularity allows for analysis of both long-term climate trends and
short-term weather patterns.
Sub-group monitoring. We propose attributes and metadata including landmass size, coast distance,
and population density for each location hence enabling to disentangle the global prediction perfor-
mance into meaningful subgroups. To define binary thresholds for islands and coastlines, we provide
flexibility with adjustable thresholds. This feature allows researchers to fine-tune their analyses based
on specific definitions of islands or coastal zones, which can vary depending on the research question
or application domain. For the purposes of our analyses, islands are defined as landmasses with size
under 30, 000 sq. miles, encapsulating most of the “minor islands” as defined by (7).

4 Observed (Un)fairness of Existing Solutions
We now present a unified fairness assessment of current SOTA INRs. We recognize that climate
data are often confounded by outside factors, e.g., cloud cover or population based crowd-sourcing
(12). As our goal is to highlight the presence of structural biases in existing INRs, we will focus
our assessments on the land-ocean dataset which is noiseless. Details on training procedures can be
found in Appendix A.2.

Global Performance is not Representative of Local Performance We begin by examining the
trends in training and evaluation. In particular, we leverage the metadata in FAIR-EARTH to compare
algorithm performance over local signals to global signals. We frame land and sea data as global
signals, with the localized counterpart being island data.

Based on preliminary correlation analysis, as expected, our results (Appendix A.5 and Fig. 2)
indicate an almost-linear relationship between land and sea data. However, we notice a striking
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moderate negative trend between land loss and island loss (R2 = 0.59). When stratified along
training resolution, this trend becomes stronger, and suggests that when optimized for total loss,
state-of-the art INRs suffer a tradeoff between global and local performance. As a proxy test for this

Figure 2: Correlation Analysis Between Local and Global Signals. Stratification along training
resolution reveals a stronger negative trend between island and land performance.

hypothesis, we select the best-performing models for each sub-group (global, island, and coastline),
and examine their performance on other subgroups (Fig. 10). As expected, there exists a sharp
degradation in island performance for top global models, and an even sharper degradation in global
performance for top island models. As a result, regardless of stratification, INRs of the form given by
Eq. (1) seem incapable of competitive performance across all subgroups at once. Finally, coastline
performance indicates a nuanced behavior of spherical harmonics for location encoding. While
coastlines represent a similarly fine signal to islands, total loss is actually positively correlated with
coastline loss, suggesting that Eq. (1) is capable of representing signals that are fine, but not localized.

Aliasing as a Result of Overfitting As referenced earlier, Eq. (1) is global in nature. The implica-
tions of this are evident in Fig. 8, where the smoothness of land and sea signals are compromised in
an effort to fit to islands. This results in the aliasing and error spikes within landmasses observed
in Fig. 1, as the algorithm overfits towards islands. In short, in the effort to precisely fit the islands,
Eq. (1) is forced to learn an unnatural representation of the land and sea masses. As we could
not identify a clear set of hyperparameters able to maintain competitive performance in both sub-
groups simultaneously, this suggests current SOTA solutions relying on INR modeling require further
development to reach truly equitable predictions.

Biases Across Multiple Modalities and Subgroups While the land-sea binary classification task
reveals natural biases against fine and localized areas, we emphasize that one of FAIR-EARTH’s
main strengths is in its ability to easily quantify subgroup disparities across multiple modalities.
In particular, we perform similar stratified evaluation against FAIR-EARTH’s benchmarks for en-
vironmental signals. For the surface temperature dataset, which exhibits similar sharp variations
across recognizable boundaries, we note similar trends. Namely, FAIR-EARTH reveals systematic
patterns in representation quality: regions with sharper variations, particularly near the coast, show
significantly higher average representation loss (MSELand = 0.87, MSECoast = 0.101) compared to
regions with smoother variations (MSESea = 0.43, MSEIsland = 0.49) (Table 5).

Moreover, this analysis extends naturally to downstream biases through FAIR-EARTH’s rich metadata.
At the country level, we observe that representation challenges at the feature level manifest as
systematic performance disparities. For instance, SPHERICAL HARMONIC and THEORY encodings
particularly struggle with to demarcate the Spain’s fine Mediterranean coastline, while all studied
encodings show degraded performance in coastal countries due to sharp temperature gradients at
land-sea boundaries (6).

5 Conclusions
Our experiments and analyses leverage the FAIR-EARTH dataset to provide a nuanced re-examination
of state-of-the-art algorithmic performance in Earth system modeling. The high-resolution nature of
the FAIR-EARTH dataset has revealed fine-grained patterns and phenomena that were previously
undetectable. Our findings indicate that the SOTA algorithm’s performance is more sensitive to
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data characteristics than previously understood, suggesting that robust and equitable evaluation
datasets like FAIR-EARTH are necessary to consider a wider range of data scenarios when assessing
algorithmic performance. FAIR-EARTH will be available as open-source for all practitioners and
research. While our current study was limited to the land-sea dataset, FAIR-EARTH also provides
multiple other learnable signals; we encourage users to reproduce and iterate on existing results.
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A Appendix

A.1 Details on Spherical Harmonics Encoding

In particular, the sinusoidal nature of the location embedding introduces some interesting challenges
as Fourier representations, and by extension, the spherical harmonic representations, are known to be
particularly suited for stationary signals (9). This phenomenon arises from a fundamental property
of these representations: to accurately capture highly localized signals, an extensive set of basis
functions is required. However, this translates to several practical issues in the context of geospatial
data. First, there is a tangible cap to basis size, due to numerical and tractability issues. Second,
with this limited basis size, the embedding is limited in its ability to represent highly localized and
fine-grained features such as islands, peninsulas, or intricate coastlines.

A.2 Training details

Our findings are the results of training over 150 model variations to adequately measure the effects
of hyper-parameters such as embedding size, training resolution, and weight decay. To generate
training data, we following the sampling procedure in (19), and similarly sample a validation set of
size 0.2× Num. Training Samples. Finally, our evaluation is conducted over the entire 1800× 3600
grid, which consists of a uniform 2D grid with 0.1◦ × 0.1◦ resolution in longitude and latitude.

Training leverages the closed-form spherical harmonic generating function by (19). For faster training,
(19) also provides analytic equations up to a certain embedding size, but these need to be re-calculated
when using larger bases. On a simple 8-core CPU machine, the full training suite takes roughly 48
hours to complete.

A.3 Dataset Info

Table 2: FAIR-Earth Components

Category Description Misc. Source
Land-Sea Binary and continuous data, with data on

percent water surface coverage for every
grid point.

Additional metadata
available for island and
coastline labeling.

(13)

Population Population distribution data for regions
across the Earth, based on primary
sources and interpolation.

Errors in Egypt and
Greenland are smoothed
via nearest-neighbor in-
terpolation.

(5)

Precipitation Global precipitation patterns and mea-
surements.

Includes time-slice data
from the year 2018 with
monthly resolution.

(4)

Temperature Temperature data and trends across dif-
ferent regions.

Includes time-slice data
from the year 2018 with
monthly resolution.

(14)

Carbon
Dioxide
Emissions

Data on CO2 emissions from various
sources globally.

– (8)

A.4 Extended Figures

A.4.1 Dataset Figures
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Figure 3: Binary Land-Sea

Figure 4: Coastline

Figure 5: Islands (in Dark Purple)
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Figure 6: Air Surface Temperature Plot (Jan. 2018)

Figure 7: Cumulative Precipitation Plot (Jan. 2018)
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A.4.2 Misc. Figures

Figure 8: Model Behavior at Different Resolutions and Regularizations. Smaller models fail to
capture any fine or local signals. Larger models poorly reconcile local signals with existing global
signals.

Missed Islands

Blending of High-Frequency Islands

Aliasing in the Middle of Landmasses

Table 3: Zoomed-In Inset Plots
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RESOLUTION 5000 10000 15000 20000 25000 30000

TOTAL 0.16 ± 0.02 0.13 ± 0.03 0.12 ± 0.03 0.11 ± 0.04 0.10 ± 0.04 0.10 ± 0.04
LAND 0.21 ± 0.03 0.15 ± 0.04 0.14 ± 0.05 0.14 ± 0.05 0.12 ± 0.06 0.16 ± 0.06
SEA 0.11 ± 0.02 0.16 ± 0.02 0.09 ± 0.03 0.08 ± 0.03 0.08 ± 0.03 0.80 ± 0.03
ISLAND 2.74 ± 0.03 3.25 ± 0.49 2.85 ± 0.33 2.66 ± 0.26 2.61 ± 0.20 2.51 ± 0.21
COASTLINE 1.06 ± 0.08 1.00 ± 0.06 0.95 ± 0.05 0.90 ± 0.04 0.82 ± 0.04 0.81 ± 0.05

Table 4: Per sub-group cross-entropy test loss across various spatial resolution of the dataset. We
observe that the bias of the model in missing “island” and “coastline” persists even for high
resolution dataset, as improvement plateaus.

Figure 9: Spherical Harmon-
ics (Eq. (1)) visualized on
the Globe.

A.5 Extended Experimental Results

Subgroup SH THEORY SPHEREC+
Land 0.076 0.217 5.867
Sea 0.028 0.063 2.152
Island 0.041 0.047 2.101
Coast 0.083 0.249 5.835

Table 5: Surface temperature regression subgroup losses for various encodings. Coast (underlined)
consistently exhibits greater losses.
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Figure 10: Performance of Top Sub-Group Models on Different Subgroups. Higher percentile
indicates better performance. No models show consistent competitive performance along all sub-
groups.

Land-Sea Classification Surface Temperature Regression

Encoding Best Country Worst Country Best Country Worst Country
(Value) (Value) (Value) (Value)

SPHERICAL HARMONIC Honduras Spain Georgia Panama
(0.001) (0.795) (0.001) (0.333)

THEORY Kyrgyzstan Spain Sierra Leone Vietnam
(0.001) (1.114) (0.002) (0.561)

SPHEREC+ Austria Chile Romania Greenland
(0.418) (1.257) (0.143) (10.425)

Table 6: Country discrepancies via FAIR-EARTH. Losses are respective to each dataset, and
only countries with over 100 sampled points are included to mitigate noise. All encoding-dataset
combinations exhibit a wide disparity in country-level performance.
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