
Neural Infalling Clouds: Increasing the Efficacy of
Subgrid Models and Scientific Equation Discovery

using Neural ODEs and Symbolic Regression

Brent Tan
Center for Computational Astrophysics

Flatiron Institute
New York, NY 10010

btan@flatironinstitute.org

Abstract

Galactic systems are inherently multiphase. Understanding the roles of the various
phases and their interactions is the next key step towards a more complete picture
of galaxy evolution. A major challenge is that the transport and dynamics of cold
clouds is governed by complex small scale processes. Large scale models thus
require subgrid prescriptions in the form of models validated with small scale
simulations. In this work, we explore using neural ordinary differential equations
(NODEs), which embed a neural network, to more accurately model these clouds.
We apply Symbolic Regression (SR) to potentially discover new insights into the
physics of cloud-environment interactions. We test this on both generated mock
data and actual simulation data. We also extend the model to include more than
one neural term. We find that NODEs in tandem with SR can be used to enhance
the accuracy and efficiency of subgrid models, and/or discover the underlying
equations to improve generality and scientific understanding. While our system is a
relatively simple one, we highlight the potential of this scientific machine learning
approach as a natural extension to the traditional modelling paradigm, both for
the development of semi-analytic models and for physically intepretable equation
discovery in complex non-linear systems.

1 Introduction

A key open problem in galaxy evolution is the discrepancy between observed star formation rates
(SFRs) in galaxies and their available gas reservoirs. The observed SFRs are unsustainable over
cosmic timescales, indicating a need for continuous gas accretion to fuel star formation [7, 13, 22].
There is observational evidence for the existence of such inflows, in the form of ‘high-velocity’
and ‘intermediate-velocity’ clouds [23] and fountain-like transport [25, 10] where clouds are lifted
out of the disk by supernova-driven winds before falling back. One of the primary challenges in
modeling these interactions is accurately simulating the complex interplay between the cold clouds
and the hot ambient medium. Hydrodynamic instabilities can shred the clouds into smaller fragments,
potentially destroying them. The cloud’s ability to survive depends on various factors [12], including
its size, density, and the efficiency of radiative cooling within the turbulent mixing layers formed
at the interface between the cold and hot gases [1, 9, 30]. Accurately capturing these small-scale
processes requires prohibitively high spatial and temporal resolution. One solution is to develop
subgrid models that can capture the effects of unresolved processes. Such models can be formulated
and tested against smaller scale high resolution simulations [29, 26], or in semi-analytical models [8].
Improving the fidelity of these subgrid models is thus critical towards advancing galaxy simulations.
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Neural ODEs (NODEs) are ODEs which include neural networks (NNs) in their parameterizations
[4, 16]. They have been applied in a wide range of domains, including neuroscience [18], fluid
mechanics [3], climate science [15] and epidemiology [20]. NODEs offer a way to combine traditional
models with deep learning and its strength in serving as high-capacity function approximators [21, 24],
and hence improve the predictive power of the model. This opens the door to using Symbolic
Regression (SR) effectively to discover new insights into the underlying physics of the system [6] by
limiting the scope of the physical process the NN captures (challenges of SR include how quickly the
search space and difficulty in interpretability scale with complexity). In this work, we use NODEs to
improve the predictive accuracy of subgrid models for infalling clouds, and SR to potentially discover
new insights into the physics of cloud-environment interactions by extracting learned equations.

2 Problem Statement

The evolution of an infalling cloud growing via mixing-cooling driven accretion can be described by
the following set of coupled ODEs [31]:
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tgrow(z, v,m)
(1)

where z, v and m represent the distance fallen, the velocity and the mass of the cloud respectively.
tgrow ≡ m/ṁ is the growth timescale, g is the gravitational acceleration, C0 is the drag coefficient,
ρhot is the density of the background, and Across is the cross-sectional area of the cloud. The crucial
term in this model is the growth timescale tgrow which is set by the physics of the turbulent radiative
mixing layers that govern the rate of exchange of mass, momentum, and energy between the cloud
and the background medium (see Tan et al. [31] for a detailed formulation). Clouds of different
initial sizes evolve at different rates since their surface area to volume ratios initially differ, and
then experience a change in geometry that is captured in the expression for tgrow. However, a key
uncertainty in tgrow is the time it takes for the onset of turbulence through instabilities. Since this
affects the initial cloud evolution, it is important for matching the subsequent evolution of the cloud.
The model accounts for this by adding a weight factor wkh, so that tgrow → tgrow/wkh(t, z, v,m). In
the absence of a more detailed physical model, Tan et al. [31] used a simple ansatz for wkh based on
the the KH timescale tkh ∝ √

χr/v [19], where χ is the ratio of the densities of cloud to background
and r is the initial cloud radius:

wkh(t) ∝ min

(
1,

t

tkh

)
. (2)

which amounts to the turbulent velocity growing linearly with time over the instability growth time
until fully developed. In this work, we instead use a NN embedded in the ODEs to learn this weight
factor. We then apply SR on the NN to discover the underlying learned equation.

3 Methods

We first generate mock data using the ansatz assumed above (Equation 2) to train and test our
NODE model. The involves generating solutions to Equation 1 assuming that Equation 2 is the right
description of wkh. We then apply SR to the learned model to see if we can recover Equation 2, since
we used it to generate the ‘ground truth’. This tests the effectiveness of the approach on a noiseless
dataset which exactly matches the true underlying model.

We then apply the same process to data taken from high resolution 3D simulations, carried out with
the publicly available MHD code Athena++ [28]. Our simulation data suite consists of 13 simulations
[31], 7 of which are used for training and 6 for testing. We use the same initial conditions for
all simulations, with the only difference being the initial cloud size. The cloud sizes range from
30 pc to 1 kpc. Each simulation generates 1000 data points spanning a time range of up to 225
Myr. We keep track of v, z, and m. The dataset is small since running large high resolution 3D
simulations is computationally expensive. However, we show that we are still able to achieve good
model performance.

To construct, solve, and train the NODE, we use the JAX framework [2] heavily, along with the
software libraries Diffrax [16] for differential equations and Equinox [17] for NNs. This enables
us to train on a single CPU core on the order of minutes. Our NODE model consists of Equations 1
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with the weight factor replaced by a NN. The NN is a multilayer perceptron with 3 hidden layers
of 32 nodes each. Each layer uses a GELU activation function. Weights are initialized using a
Xavier/Glorot initialization scheme. We use the ADAMW optimizer, and train the network in 2 stages.
In the first stage, we train for 1300 steps with a learning rate (LR) of 2× 10−3 on the first 20% of
the time series. In the second stage, we train for 3500 steps with a LR of 3 × 10−3 on the entire
training data. This is a common strategy in training NODEs to avoid getting initially trapped in
local minima. The NN takes in (z, v,m) and the initial cloud size r as input. All input data into
the NN is normalized, and the mass which can grow by orders of magnitude over the simulation is
log-transformed. The output is a single value corresponding to the weight factor.

We calculate our loss function as the mean squared error between the predicted and actual mass
solutions. We find that only including the mass in instead of all changing variables (z, v and m)
improves training stability since the mass is the quantity most directly sensitive to the growth rate. We
also multiply the loss by a coefficient which decreases over time. This coefficient starts at 1 and then
decreases linearly over time to a low of 0.1. This focuses the model on earlier times, which improves
the training process in NODEs where late time values are sensitive to earlier ones. We numerically
solve the ODEs using Tsitouras’ 5/4 method [32], which is a 4th order explicit Runge-Kutta method
when using adaptive step sizing, which we employ via a PID controller [27]. For SR, we use the
package PySR [5]. The model with the highest score is selected (score is defined to be the negated
derivative of the log-loss with respect to complexity). We allow the common binary operators along
with the power and minimum operators, and the logarithm and exponentiation unary operators. We
use a population size of 100 and ensure that we iterate for a sufficient amount of time to get a
converged model. We also include physical units to so as to favor dimensionally consistent equations.

4 Results

Performance on mock data We first train on the generated mock data to evaluate the performance
of the NODE on a known hidden function. In the top panel of Figure 1, we compare the trained
NODE predictions against the ‘ground truth’. The NODE does well for cloud sizes that fall within
the range spanned by the training data. However, it does a poorer job at predicting the weight factor
and hence the evolution of test clouds with sizes that are outside the range of the training data. This
is unsurprising — out-of-distribution generalization is a well-known challenge in scientific machine
learning. We verify that applying SR to the NODE discovers the hidden equation used to generate the
data (Equation (2)), giving an almost identical equation. SR hence improves the generalization of the
NODE. It also makes the results intepretable — we are able to interpret the discovered equation as
with any other physical equation we might have derived using traditional methods.

Performance on simulation data We then train the NODE on actual simulation data. In the second
row of Figure 1, we compare NODE predictions against the simulation data. The data from the
simulation is more limited for smaller clouds due to box sizes in the simulation. Since our loss
function is based on the mass, the NODE is able to capture the evolution of the mass very well, but
less so for the velocity. Due to the constrained scope of the NN in our ODEs, we can infer this is
likely due to the model not accounting for drag well, which only affects the velocity directly. This
indicates that we need to better model the drag in order to increase the fidelity of the model. As
before, we apply SR and find that the SR still recovers a very similar equation to Equation (2). This
suggests that this was a good choice in the original work despite its simplicity. The third row of
Figure 1 shows the SR result: velocity predictions are more accurate but mass predictions are worse.

A second neural network Since we attribute the poorer accuracy in velocity prediction to the loss
function (physically motivated by the fact that turbulent mixing only directly affects mass growth)
and the simplistic representation of drag in our equations (we assumed C0 = 1; for growing clouds,
this term is usually small [31]), we can further improve our subgrid model by using a second NN.
We freeze the trained model from the previous section and replace C0 with a second NN. Since the
baseline model already works well, we train on the full time evolutions from the start. We employ
early stopping to avoid overfitting. We compute the loss with respect to the v instead of the m, since
C0 only directly affects the cloud’s velocity. The results can be seen in the bottom row of Figure 1,
which shows that the model now does a better job at matching the velocity evolution. Training
separately is more efficient since we were able to use two separate loss functions, with the first NN
capturing the more important physical process in the system.
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Once again, we use SR to recover a physical expression for the drag coefficient. This gives the
expression C0 = min(0.92/v, 8.6). The min prevents the function 1/v diverging at t = 0. Unlike
the previous equation for the weight factor which was already known to us (discovered using manual
methods in the original paper), this is a new equation that was not used in the original model, which
assumed a constant value for C0. However, it can be seen that using this expression for C0 improves
the fidelity of the model when compared to simulation results. From this, we can also make physical
interpretations about how conventional drag on the cloud is evolving in our simulation. Looking into
the literature, this inverse scaling of C0 with velocity is consistent with a range of empirical data
for spheres which find that the drag coefficient scales inversely with the Reynolds number, which
itself scales linearly with velocity [11]. Furthermore, while the cloud begins as spherical object, it
develops a long tail and becomes more streamlined as it falls and grows [31]. We hence expect C0 to
eventually approach some very small value ≪ 1, which is consistent with the predictions of the NN
in the bottom left panel of Figure 1.

5 Conclusion

Astronomical simulations traditionally rely on subgrid models to capture important unresolved
processes. We have shown that NODEs can be used to improve the predictive power of such models
and better capture the complex physics involved even with limited training data. Minimal resources
are required compared to other machine learning methods. They are both intepretable and physically
motivated, while still being flexible and predictive. We were also able to effectively employ SR for
scientific equation discovery. We additionally demonstrated that we can train multiple neural terms
for different physical processes, each with its own physically tailored loss functions. This further
improves the accuracy of the model and increases the effectiveness of using SR. While SR is a strong
tool for interpretability, we did not test how generalizable the discovered equations are for out of
distribution simulation data. This would be a good avenue for future work, along with exploring how
effective such methods would be for more complex systems.

In conclusion, neural ODEs in tandem with Symbolic Regression are natural extensions of traditional
methods of formulating subgrid/semi-analytic models and should be seen as valuable parts of the
modeling toolkit, both to develop more accurate models of complex systems and to enhance the
scientific discovery process.
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Figure 1: Columns show evolutions curves for (from left to right): weight factor/drag coefficient,
velocity, and mass. Solid lines show model predictions, while generated/simulation data are repre-
sented by dashed lines. Test data is either in distribution (ID) or out of distribution (OOD). Each
curve corresponds to a different cloud size. From top to bottom, the rows show results for training
and testing on: mock data, simulated data, with symbolic regression on simulated data, and with a
second neural network on simulated data.
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