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Abstract

Uncertainty quantification (UQ) methods play an important role in reducing errors
in weather forecasting. Conventional approaches in UQ for weather forecasting
rely on generating an ensemble of forecasts from physics-based simulations to
estimate the uncertainty. However, it is computationally expensive to generate
many forecasts to predict real-time extreme weather events. Evidential Deep
Learning (EDL) is an uncertainty-aware deep learning approach designed to provide
confidence about its predictions using only one forecast. It treats learning as
an evidence acquisition process where more evidence is interpreted as increased
predictive confidence. We apply EDL to storm forecasting using real-world weather
datasets and compare its performance with traditional methods. Our findings
indicate that EDL not only reduces computational overhead but also enhances
predictive uncertainty. This method opens up novel opportunities in research areas
such as climate risk assessment, where quantifying the uncertainty about future
climate is crucial. (Github: https://github.com/SULI24/edl-stormcast/)

1 Introduction

The study of climate and weather holds paramount importance due to its direct impact on natural
ecosystems and human societies. Accurate weather predictions can significantly aid in disaster
preparedness, agricultural planning, and energy management. Traditionally, numerical weather
prediction (NWP) models have been the cornerstone of forecasting. These models simulate the
atmosphere and its dynamics based on physical laws. These models, including the state-of-the-art
High Resolution Ensemble Forecast (HREF) rainfall nowcasting model used in National Oceanic
and Atmospheric Administration (NOAA) [37], rely on meticulous numerical simulation of physical
models. These simulation-based systems fall short in the ability to incorporate signals from newly
emerging geophysical observation systems [21], or take advantage of the Petabytes-scale Earth
observation data [46]. In addition, they come with high computational costs and inherent complexities
which can limit their scalability and accessibility [12, 27, 51].

In recent years, data-driven approaches, particularly deep learning, have emerged as powerful alterna-
tives to traditional NWP models [38]. State-of-the-art methods in this domain have demonstrated
impressive predictive capabilities by leveraging large datasets of historical weather patterns. Yet, a
significant limitation of most existing deep learning approaches is their deterministic nature. Unlike
traditional methods, these models typically do not provide measures of uncertainty in their predictions,
which is crucial for risk management and decision-making in meteorology [18, 10].

Ensemble and Bayesian models address this gap by offering a framework to quantify prediction
uncertainty, being especially used in weather forecasting problems [19, 30, 32]. Ensemble methods,
for instance, generate multiple forecasts to capture a range of possible outcomes, enhancing the
reliability of predictions [25]. Bayesian approaches, similarly, provide a probabilistic interpretation by
considering the uncertainties in model parameters [15]. Nonetheless, both methods entail substantial
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computational overheads, primarily due to the need for multiple model evaluations or complex
posterior calculations, making them less feasible for real-time forecasting applications. More
information on related works are summarized in Appendix A.

To bridge this critical gap, we introduce an innovative approach utilizing evidential deep learning [40,
5]. This method extends the conventional deep learning framework to efficiently quantify uncertainties.
Evidence deep learning, based on the concept of evidential theory, estimates the uncertainty directly
during the learning process without the need for repetitive model runs or intricate probabilistic
sampling. This allows for a significant reduction in computational demands while maintaining the
ability to provide calibrated and interpretable uncertainty estimates alongside predictions.

Our empirical results validate that the proposed model not only achieves competitive accuracy in
weather forecasting but also produces reliable and well-calibrated uncertainty measurements. These
outcomes make a compelling case for the adoption of evidence deep learning in operational settings,
where quick and dependable weather forecasts are crucial.

2 Methods

2.1 Problem Statement

The primary objective in weather forecasting is the accurate prediction of future atmospheric states
based on a series of observed historical data. Let xt denote the atmospheric state at time t,
encapsulating various meteorological variables such as precipitation (kg m−2). The task is to
forecast the future k time step states xt+1, xt+2, . . . , xt+k by leveraging the historical sequence of
the previous n time steps xt−n, xt−n+1, . . . , xt. The predictive task can be formalized as a function
mapping from the domain of past atmospheric data to the domain of future states:

f : Xn+1 → X k (1)

where X represents the set of atmospheric states, n indicates the number of historical time steps
utilized, k specifies the number of future time steps to be forecasted, and f is the predictive function.

2.2 Evidential Deep Learning

The central objective of this research is to develop an approximation of the function f using a
sophisticated deep learning model, denoted as f̂ . For this purpose, we have selected EarthFormer, a
state-of-the-art architecture known for its effectiveness in handling complex spatio-temporal data,
as our primary model. However, the inherent challenge with such deterministic models lies in
their inability to effectively capture the uncertainty intrinsic to meteorological phenomena, which
is crucial given the chaotic nature of weather systems. To address this limitation, we propose to
enhance the EarthFormer model by extending its capabilities into the probabilistic domain through
the integration of evidential deep learning (EDL). Due to page constraints, the comprehensive details
of the EarthFormer are relegated to the Appendix B. This section concentrates on the implementation
of the EDL framework.

We are given a dataset, D with N paired training examples, D = {xi, yi}Ni=1. In the deep evidential
regression framework, the targets, yi, are parameterized by a Gaussian distribution with an unknown
mean and variance (µ, σ2) [5, 40]. The conjugate prior distribution of (µ, σ2) is then set to the
Normal-Inverse-Gamma (NIG) distribution [33]. Deep evidential regression alters the model to output
the parameters, m = (γ, υ, α, β), of the higher-order, evidential NIG distribution where γ ∈ R,
υ > 0, α > 1, β > 0. . Since m is composed of 4 parameters, the model needs four output neurons
for every target parameter. To enforce the constraints on (v, α, β), we use a softplus activation
(and additional +1 added to α since α > 1). A linear activation is used for γ ∈ R. Then given a NIG
distribution, we can then compute the prediction, aleatoric, and epistemic uncertainty as:

E[µ] = γ︸ ︷︷ ︸
prediction

, E[σ2] = β
α−1︸ ︷︷ ︸

aleatoric uncertainty

, Var[µ] = β
υ(α−1)︸ ︷︷ ︸

epistemic uncertainty

. (2)

To ensure the model learns these parameters, the optimal loss function for the EDL model is composed
of two primary components: the negative log likelihood, LNLL

i , and the evidence regularizer, LR
i . The
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authors of Ref. [5] show that by using Bayesian probability theory, LNLL
i becomes a scaled Student’s

t-distribution parameterized as:

LNLL
i (w) = − log St

(
yi; γ,

β(1 + υ)

υ α
, 2α

)
. (3)

where St
(
y;µSt, σ

2
St, υSt

)
is the Student-t distribution evaluated at y with location µSt, scale σ2

St, and
υSt degrees of freedom. Instead of using the KL Divergence in LR

i like in the classification setting,
the authors formulate a novel evidence regularizer as:

LR
i (w) = |yi − γ| · (2υ + α) (4)

The total loss, Li(w), is composed of the two loss terms for maximizing and regularizing evidence,
scaled by a regularization coefficient, λ,

Li(w) = LNLL
i (w) + λLR

i (w). (5)

where λ > 0 is a regularization coefficient. Here, λ trades off uncertainty inflation with model fit.
Setting λ = 0 yields an over-confident estimate while setting λ too high results in over-inflation.
The authors of Ref. [40] proposed a dynamically scaled choice of λ to ensure a gradual increase
of λ during the training process. This scaling allows the influence of the evidence regularizer to
initially be limited, avoiding overly harsh penalties that could lead to model convergence towards
an under-confident distribution prematurely. Then, as the model converges, the evidence regularizer
becomes more prominent, guiding the model towards a more accurate uncertainty quantification.

3 Experiments

3.1 Experimental Setup

Data We utilize the Storm EVent ImageRy (SEVIR) dataset [46]. Specifically, the task is defined as
precipitation nowcasting by predicting the next 12 images, each representing a 5-minute interval, in
the sequence given 13 images, or 65 minutes, additionally detailed in Appendix C.1.

Baselines The proposed EDL is assessed against two state-of-the-art models: ensemble methods [25]
and Monte Carlo (MC) Dropout [15]. Both methods require multiple inferences to estimate the
uncertainty. As a result, we use 10 different inference passes. Details are available in Appendix C.2.

3.2 Results

Model Accuracy All training is done on two NVIDIA H100 GPUs, and all testing is done on 1
NVIDIA A100 GPU. We first calculate the Critical Success Index (CSI), a widely used metric in
precipitation nowcasting that evaluates forecast accuracy by comparing correctly predicted events to
the total number of predicted or observed events. CSI is usually defined as #Hits

#Hits+#Misses+#FalseAlarms ,
where #Hits (truth=1, pred=1), #Misses (truth=1, pred=0), and #FalseAlarms (truth=0, pred=1)
are determined after rescaling predictions and ground truth to 0-255 and binarizing at thresholds
[16, 74, 133, 160, 181, 219]. CSI ranges from 0 to 1, with 1 indicating a perfect forecast. In Table 1,
we report CSI values across different thresholds. Results indicate that EDL performs relatively better
at lower thresholds, though it lags behind Ensemble and MC Dropout methods. Notably, using
initial weights pretrained without EDL significantly boosts EDL performance, especially at higher
thresholds like CSI-181 and CSI-160.

Table 1: Prediction performance comparison. Note that P-EDL refers to EDL with pretrained weights
optimized using MSE loss.

Model Metrics
CSI-219 ↑ CSI-181 ↑ CSI-160 ↑ CSI-133 ↑ CSI-74 ↑ CSI-16 ↑

Ensemble 0.1436 0.2613 0.3081 0.4225 0.6947 0.7666
MC Dropout 0.1436 0.2613 0.3081 0.4225 0.6947 0.7666
EDL 0.0027 0.0726 0.1530 0.3303 0.6676 0.7358
P-EDL 0.0066 0.1215 0.2205 0.3682 0.6416 0.7562
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We also compute the mean squared error (MSE) as a function of
prediction lead time. As shown in Figure 1, the MSE for all models
increases with longer lead times, highlighting the challenge of
maintaining accuracy over extended predictions. This trend also
suggests that the Ensemble and MC Dropout methods may be
preferable when the primary focus is on minimizing prediction
error over time.

Model Efficiency We further assess the computational efficiency
of each model by measuring average inference time and GFLOPS.
As shown in Figure 2, EDL consistently outperforms both MC
Dropout and Ensemble in terms of GFLOPS and inference time.
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Figure 1: Plot of average MSE
for varying forecasts time leads.This advantage arises because EDL

conducts uncertainty analysis directly
within a single model, whereas MC
Dropout and Ensemble require mul-
tiple models or particles, necessitat-
ing several inferences to estimate un-
certainty. Additionally, EDL and
MC Dropout have a comparable num-
ber of parameters, both significantly
fewer than Ensemble, which relies
on multiple models. However, MC
Dropout’s need for repeated runs to
generate uncertainty estimates sub-
stantially increases its computational
cost.

Uncertainty Diagnosis In our final
analysis, we assess the quality of the
estimated uncertainty across different
models. To begin, we investigate the
relationship between uncertainty and
model accuracy by plotting the nor-
malized correlation between uncer-
tainty and MSE at varying forecast
time leads (Figure 3). As expected,
the correlation generally decreases
over time, reflecting the growing dif-
ficulty in making accurate predictions
as the forecast horizon extends. Nota-
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Figure 2: Histograms of the inference time and GFLOPS.
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Figure 3: Uncertainty analysis results: The left panel displays the
normalized correlation between uncertainty and MSE, while the
right panel shows the reliability curves. Models closer to the dashed
y = x line exhibit well-calibrated uncertainty.

-bly, P-EDL maintains a higher normalized correlation over time, suggesting more stable uncertainty
estimates, whereas EDL experiences a sharp decline, indicating a potential loss in calibration with
increasing lead time. We also evaluate calibration using a reliability diagram, where a perfectly
calibrated model aligns with the dashed y = x line. EDL demonstrates strong calibration, with
P-EDL slightly less accurate. By utilizing pretrained weights, P-EDL prioritizes the accuracy of
the prediction rather than the accuracy of the uncertainty. As a result, the accuracy is higher but it
has worse uncertainty calibration. In contrast, Ensemble and MC Dropout deviate further from the
optimal line, highlighting the superior uncertainty estimation of EDL. Additional uncertainty plots
are provided in the Appendix D.

4 Conclusion

We propose the use of EDL for storm forecasting as an effective measure of model uncertainty.
Although the model has a slightly worse MSE and CSI values, the use of only one model and one
forecast makes it much less time-consuming and computationally expensive than both Ensemble and
MC Dropout. The uncertainty from EDL has also proven to be more well-calibrated than traditional
methods. We propose the use of pretrained weights on MSE loss for EDL, P-EDL, to ensure that
the MSE loss significantly decreases and it maintains higher normalized correlation with increased
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leading time. P-EDL ensures similarly well-calibrated uncertainty. Uncertainty calibration and
computational is very important when dealing with reliable, real-time predictions, but it shouldn’t
come at the expense of accuracy. We will work on subsequent methods to maintain accuracy in
EDL. In the future, EDL could be incorporated to refine the uncertainty estimates across ensemble
members, providing a more robust assessment of model predictions by weighting them based on their
evidential support. In addition, other data distributions, such as Poisson or a Gamma distribution,
could be adopted within EDL.
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A Related Works

Deep Learning-based Weather Prediction. Traditional DL approaches to weather forecasting
involve CNN and RNN. U-Net based architectures that include CNN have been applied to sea
ice forecasting [8], precipitation nowcasting [46, 50], and cloud cover nowcasting [14]. Shi et
al. [41] proposed ConvLSTM that leverages CNN and LSTM for precipitation nowcasting. Wang et
al. [48] proposed PredRNN which extends the predictive capabilities of ConvLSTM by introducing a
spatiotemporal memory architecture. To better learn long-term high-level relations, Wang et al. [47]
proposed E3D-LSTM that integrates 3D CNN with LSTM. To disentangle PDE dynamics from
unknown complementary information, Guen et al. proposed PhyDNet [22] which incorporates a
new recurrent physical cell to perform PDE-constrained prediction in latent space. Espeholt et
al. [13] proposed MetNet-2, based on ConvLSTM and dilated CNN, that outperforms HREF in
precipitation forecasting. Very recently, there are works that have implemented Transformer for
solving weather forecasting problems [7] Pathak et al. [34] proposed the FourCastNet for global
weather forecasting, which is based on Adaptive Fourier Neural Operators (AFNO) [23]. Bai et al. [9]
proposed Rainformer for precipitation nowcasting, which is based on an architecture that combines
CNN and Swin-Transformer [29]. Later, Gao et al. proposed the Earthformer [17] which implements
cuboid attention to reduce computional expense. Pangu-Weather leverages a 3D Vision Transformer
that separates the input into cubes to predict in a medium time range scale (5− 10 days). There are
also other GNN models like GraphCast [26] and diffusion models like GenCast [35], but precipitation
forecasting has not been their strong point. Diffusion-based models are probabilistic, but sequentially
denoising the input over multiple steps can be computationally expensive [16, 49, 20].
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Probabilistic Modeling It is preferred to extend deterministic models to incorporate uncertainty,
generating a distribution of possible outcomes rather than a single outcome. There are a variety
of popular techniques to incorporate uncertainty: (1) Ensemble Methods: By combining multiple
models or fit one model with diverse hyperparameters, we can get better generalization performance
in the final prediction [25]. Popular in NWP models [19], ensemble methods has gained traction in
deep learning [1]. Some examples of its applications include computer vision [1], spatiotermporal
forecasting [31], mechinal machinery [4], and precipitation nowcasting [6]. However, training
multiple models can be time-consuming and computationally intensive. (2) Bayesian Methods:
Instead of using multiple models, Bayesian deep learning (BDL) incorporates Bayesian concepts to
quantify uncertainty effectively. BDL models utilize a posterior probability distribution that relies
on prior knowledge distribution and the likelihood of the data being utilized [15]. This framework
represents model weights as random variables [3], and the uncertainty can be generated by using the
prior and likelihood to sample from the posterior distribution. The most popular techniques are Monte
Carlo Dropout [15] and Variational Inference (VI) [11]. These techniques are popular in computer
vision [43, 24], healthcare [2], and weather forecasting [30]. It is also very popular in precipitation
nowcasting [42, 44, 36]. However, it is difficult to scale due to the multiple predictoins needed
to approximate uncertainty. (3) Evidential Deep Learning Methods: Evidential Deep Learning
(EDL) is a novel method to quantify uncertainty directly by modeling the evidence supporting
different outcomes [5, 40]. By directly using one model and a single forward pass, EDL offers a
comprehensive framework to learn the uncertainty. This technique has been used in healthcare [28],
computer vision [45], and Earth system modeling [39]. Schreck et al. [39] also apply EDL in Earth
system science applications, but they focus more on Earth system modeling rather than forecasting.
Instead, we focus on weather forecasting problems. We examine the computational expense and the
uncertainty calibration of EDL compared with baseline methods.

B Model Architecture

The Earthformer model employs a sequence of atmospheric state vectors as its input, representing the
dynamic meteorological conditions over time:

Xn+1 = [xt−n, . . . , xt] (6)

Each vector x in the sequence encapsulates essential atmospheric variables such as temperature,
pressure, and humidity, corresponding to specific timestamps.

Input Embedding: Each input vector xt undergoes a transformation into a higher-dimensional
feature space to facilitate more complex interactions and learning. This transformation is realized
through an embedding layer defined by:

Emb(xt) = Wext + be (7)

where We and be represent the embedding weight matrix and bias vector, respectively, both of which
are parameters learned during training.

Positional Encoding: To incorporate the temporal sequence information essential for forecasting,
positional encodings are added to the input embeddings. These encodings are computed using
trigonometric functions:

PE(pos,2i) = sin
( pos

100002i/dmodel

)
, PE(pos,2i+1) = cos

( pos

100002i/dmodel

)
(8)

where pos indicates the position in the sequence and i denotes the dimension index. The embedded
inputs are then modified as:

H0 = Emb(X) + PE (9)

Cuboid Attention: EarthFormer is a hierarchial Transformer encoder-decoder based on Cuboid
Attention. Traditional Transformers compute attention scores using a query (Q), key (K), and value
(V) framework, commonly expressed as:
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Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (10)

In this equation, Q, K, and V are matrices derived from the input data, where dk represents the
dimensionality of the keys, facilitating the scaling of dot products.

Cuboid attention modifies this framework to address the complexities of 3D data, focusing on the
spatial, depth, and temporal dimensions. It is computed by reshaping the embeded inputs H0 to
emphasize its three-dimensional structure:

Q,K, V = reshape(H0), to shape (D,H,W, dk) (11)

The attention scores are then calculated across blocks or cuboids within the data:

Attention(Q,K, V ) = softmax
(

reshape(Q) · reshape(K)T√
dk

)
· reshape(V ) (12)

This reshaping and attention computation enables the model to focus on interactions not just within
each plane, but across all three dimensions. To synthesize the information from different dimensions,
the attention outputs are combined:

H =
1

3
(AttentionD(Q,K, V ) + AttentionH(Q,K, V ) + AttentionW (Q,K, V )) (13)

Where AttentionD, AttentionH , and AttentionW are the attention computations performed along the
depth, height, and width dimensions, respectively.

Layer Normalization and Feed-Forward Network: After attention processing, the output undergoes
layer normalization to stabilize the training process, followed by a feed-forward network:

H ′ = LayerNorm(H + Attention(H)), H ′′ = LayerNorm(H ′ + FFN(H ′)) (14)

The feed-forward network (FFN) consists of two linear transformations with a nonlinear activation
function in between, enhancing the model’s ability to capture non-linear relationships.

Output: The output from the final Transformer block H ′′ is decoded to predict future atmospheric
states, which are essential for accurate weather forecasting:

X k = [xt+1, . . . , xt+k] = Decoder(H ′′) (15)

where X k denotes the predicted future states, providing crucial insights into upcoming weather
conditions.

C Additional Details on Experiments

C.1 Data

We utilize the Storm EVent ImageRy (SEVIR) dataset [46], a widely used benchmark for metero-
logical applications. This spatiotemporally aligned dataset contains over 10,000 weather events,
each consisting of 384 km × 384 km image sequences that span over 4 hours. Images in SEVIR
were sampled and aligned across five different data types: three channels (C02, C09, C13) from the
GOES-16 advanced baseline imager, NEXRAD vertically integrated liquid mosaics, and GOES-16
Geostationary Lightning Mapper (GLM) flashes. This dataset supports a variety of deep learning
research in meteorological applications like precipitation nowcasting, synethic radar generatino, front
detection, and more. We use SEVIR for precipitation nowcasting by predicting the next 12 images,
or 60 minutes, in the sequence given 13 images, or 65 minutes. Like the authors of Ref. [17], we
normalized the data to the range [0, 1]. Figure 4 gives an example of the SEVIR VIL frame sequences.
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Figure 4: Example Vertically Integrated Liquid (VIL) observation sequence from the Storm EVent
ImageRy (SEVIR) dataset. The observation intensity is mapped to pixel value of the range 0-255.
The larger value indicates the higher precipitation intensity.

C.2 Baselines

Traditionally, ensemble methods [25] and Monte Carlo (MC) Dropout [15] have been popular
techniques for estimating epistemic uncertainty in neural networks. Ensemble methods involve
training multiple models independently and using the variance of the outputs to evaluate uncertainty.
MC Dropout utilizes dropout layers both during training and inference to stimulate the effect of
Bayesian inference, thus providing a stochastic basis for uncertainty estimation. Both methods are
computationally intensive as they require multiple inferences to estimate the uncertainty, reflecting a
significant trade-off between computational efficiency and accuracy. This makes them less prone to
be used in real-time due to the large memory and computational expense. For our purposes, we use
10 different inference passes for both Ensemble and MC Dropout.

D Uncertainty Plots

We plot the uncertainties for both the EDL and P-EDL models below using test data. We display the
target and output values as well as the Root Mean Square Error (RMSE) and epistemic uncertainty
for visualization purposes. We visualize these values over forecasts times from 10 to 40 minutes in
the future. The uncertainty tends to get less detailed as the forecast time increases, and the errors
also tend to increase. Most of the uncertainties are near the edges of the storms, and they are often
concentrated near high VIL values, which the model is insufficient at predicting.
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Figure 5: Plot of error and uncertainties for EDL model
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Figure 6: Plot of error and uncertainties for P-EDL model
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Figure 7: Plot of error and uncertainties for EDL model
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Figure 8: Plot of error and uncertainties for P-EDL model
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Figure 9: Plot of error and uncertainties for EDL model
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Figure 10: Plot of error and uncertainties for P-EDL model
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