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Abstract

In the realm of geographic data, implicit neural representations (INRs) often
incorporate location embeddings to enhance performance in downstream tasks.
Recent advancements in this field have introduced location encodings based on
Fourier domain decomposition. However, given the localized nature of many
geographic signals, these approaches may introduce significant biases against
certain geographic subgroups. To this end, we propose an alternative encoding
mechanism, lifting the theoretical guarantees of spherical wavelets. Leveraging
the FAIR-Earth dataset (1), we demonstrate that our novel encoding successfully
mitigates biases in localized regions while simultaneously maintaining competitive
global performance. Our approach represents a significant step forward in creating
more equitable and accurate INRs for geographic data.

1 Introduction

In recent years, implicit neural representations (INRs) have emerged as a novel approach to geospatial
modeling, offering a continuous and compact representation of complex signals (4). As INRs are
being deployed increasingly for various geospatial tasks, it is crucial to understand and emphasize
fairness of solutions beyond average-case performance. This of course is practically motivated: for
tasks like natural disaster risk assessment where consequences are severe, there is a natural emphasis
on improving worst-case performance, rather than average-case metrics (10). In particular, the
multi-scale nature of geographic phenomena necessitates approaches that reconcile global patterns
with localized ones.

Recent work in the INR domain (13) centers on advancing a certain portion of the pipeline–input
embeddings–via decomposition onto the harmonic domain. While these Fourier-based approaches
have shown efficacy in capturing global geographic patterns, it is well-established both theoretically
and empirically that the global support of Fourier bases introduces biases against localized signals,
compromising more fine-scaled geographic representations (7; 1).

To address these limitations, we propose a novel encoding mechanism grounded in existing research
into spherical wavelets. Then, leveraging the Fairness Assessment for Implicit Representations
of Earth Data (FAIR-Earth) for fine-grained evaluation, we show our spherical wavelet encodings
reconcile global signals with local variations on the sphere, reducing bias in localized regions
significantly compared to spherical harmonic encodings (1). Moreover, we qualitatively evaluate the
corrections achieved with spherical wavelets, and confirm that models can concurrently maintain
competitive global performance.
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2 Background

Departing from the spherical harmonic encodings proposed in (13), we implement an encoding based
on existing literature in spherical wavelets by (5) and (12). The foundation of our approach lies in the
fundamental properties developed from one-dimensional wavelets, which have revolutionized the
task of multiresolution decomposition of signals.

In the context of geospatial tasks, wavelets possess several key characteristics for natural data
(14). Unlike Fourier transforms, wavelets provide excellent localization in both time/space and
frequency domains, allowing for efficient representation of local features and discontinuities in
signals (7). Similarly, wavelets facilitate the decomposition of signals at multiple scales, enabling
the representation of both fine details and broad structures. Finally, the existence of various wavelet
families (e.g., Haar, Daubechies, Mexican Hat), allows for flexibility in choosing appropriate bases
(11).

Beyond the one-dimension case, there exist many extensions of wavelet analysis to two-dimensional
and spherical domains. In particular, (12) introduces two different schemes for constructing spherical
wavelets: via direct stereographic projection of Euclidean wavelets, and via direct construction in
harmonic space. The former method is well-defined only in the real space, whereas the latter is only
well-defined in harmonic space; following the convention in (13), we later construct encodings based
on projection for ease of analysis in the real domain.

2.1 FAIR-Earth

To compare performance across different subgroups, including localized features such as islands and
fine groups like coastlines, we leverage the FAIR-Earth dataset, which offers both high-resolution
and subgroup monitoring (1). In contrast to the data initially used in (13), FAIR-Earth offers high-
resolution granularity along multiple modalities, motivated by pressing representation tasks in climate
and carbon dioxide monitoring. For the purpose of analysis, we examine the land-sea data, which
employs a uniform 0.1◦ x 0.1◦ gridding of the globe, yielding a consistent 1800 x 3600 map size. A
full dataset description and set of visualizations are available in the Table 2.

3 Spherical Wavelets for Geographic Location Encoding

3.1 Spherical Morlet Wavelet

As introduced in (12), the inverse stereographic projection of an admissible Euclidean wavelet yields
an admissible spherical wavelet; that is, the projection satisfies the necessary zero-mean condition (5)

Cψ ≡
∫
S2

dµ(θ, φ)
ψ(θ, φ)

1 + cos θ
= 0

Thus, applying the inverse projection onto the 2D Morlet wavelet with width factor and wave number
w, k = 1 yields the admissible spherical Morlet mother wavelet:

ψM (θ, ϕ) = [Π−1ψR2 ](θ, ϕ) =
ei tan(θ/2) cos(ϕ)e−(1/2) tan2(θ/2)

1 + cos θ

3.2 Lifting Scheme

From an admissible mother wavelet, we can now construct a wavelet basis from affine transformation
on the sphere. Analogous to time-frequency localization of Euclidean wavelets, spherical wavelets
provide localization via rotation and dilation. The rotation operator R(ρ) ≡ R(α, β, γ) and dilation
operator D(a) both transport a function f ∈ L2(S2, dµ(θ, ϕ)); refer to (12) for rigid formulation.
Applying these transformations, we can then strictly define a set of orthogonal basis functions

{ψa,ρ ≡ R(ρ)D(a)ψM}

Finally, to discretize the reconstruction formula, we follow convention in wavelet literature. First, we
split ρ into a uniform grid CN = { 2πnα

N ,
2πnβ

N ,
2πnγ

N , 0 ≤ nα, nβ , nγ ≤ N}, where N denotes the

2



Figure 1: (a) Top Left: Untransformed (b) Top Right: Higher Wave Number
(c) Bottom Left: Rotated Wavelet (d) Bottom Right: Dilated Wavelet

granularity of rotations. Then, we take a ∈ {2
i
Q , 0 < i ≤ M}, where Q ≤ 8 is a fixed value (11).

This yields an embedding size on the order of O(N3M), and the discretized approximation

f(θ, ϕ)N,M ≡
∑
ρ∈CN

M∑
i=1

wa,ρψa,ρ(θ, ϕ)

4 Experiments

Localized Biases are Largely Corrected With Spherical Wavelets To examine the biases pre-
sented in (1), we begin by analyzing the trends in training and evaluation, based on a uniform set of
hyperparameters. In particular, we leverage FAIR-Earth to compare algorithm performance between
local signals and global signals. As a baseline, we compare to results presented in (1), which indicated
a striking negative trend between land loss and island loss (R2 = 0.59). To control for confounding
factors, we replicate their experimental design (including network design, hyperparameters, etc.),
with the sole difference coming in the form of spherical wavelet embeddings.

Upon initial analysis, we see in Fig. 2 and Table 1 the glaring disappearance of this trend; that is,
there no longer appears to be a tradeoff between global (land) and localized (isalnd) performance. In
fact, for finer resolutions, the correlation is entirely insignificant (R2 = 0.04), and even positive for
training resolution of 15000. Compared to the results in (1), we see that when optimized for total
loss, our spherical wavelet encoding largely corrects the biases against localized regions.

Figure 2: Correlation Analysis Between Local and Global Signals. Contrary to spherical harmonic
encodings, there exists insignificant correlation between local and global signals.
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Table 1: Comparison of Correlation Between Land and Island Performance By Encoding and
Training Resolution

Training Samples Pearson Correlation (R)
Spherical Harmonics Spherical Wavelets

5000 −0.75 −0.44
10000 −0.77 −0.23
15000 −0.71 0.03
20000 −0.64 −0.21

Spherical Wavelets are Competitive with Existing Methods To better understand the behavior
of spherical wavelet encodings, we select a pair of spherical harmonic and spherical wavelet model
results, controlled for all other model parameters. In Fig. 3 we note a primary artifact of spherical
harmonics encodings that spherical wavelet encodings address: blending of landmasses. Specifically
in localized areas, spherical wavelet encodings tend to produce sharper, more fine boundaries
compared to spherical harmonic encodings. Moreover, we note that the global performance of
spherical wavelets (BCE_Loss = 0.096) is on-par with that of spherical harmonics (BCE_Loss =
0.099), as indicated by the visual similarities in their learned representations.

Spherical Harmonic

Spherical Wavelet

Figure 3: Comparisons of Spherical Harmonic and Spherical Wavelet Behavior in Localized Regions.
Full figures available in Fig. 9 and Fig. 10

5 Conclusion

Our construction, experiments, and analyses lay the groundwork for a novel location encoding
mechanism based on spherical wavelets. In comparison to spherical harmonic encodings, our
encodings produce sharper and more well-defined boundaries in the land-sea classification task. In
the process, we leverage the FAIR-Earth dataset (1) to show general corrections to biases against
localized regions, a crucial improvement to building fairer INRs of geographic data. While our
current study was limited to a subset of land-sea boundary signals, there exist diverse Earth signals
that may benefit from a similar nuanced, motivated approach to encoding.
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A Appendix

A.1 Dataset Info

Table 2: FAIR-Earth Components

Category Description Misc. Source
Land-Sea Binary and continuous data, with data on

percent water surface coverage for every
grid point.

Additional metadata
available for island and
coastline labeling.

(8)

Population Population distribution data for regions
across the Earth, based on primary
sources and interpolation.

Errors in Egypt and
Greenland are smoothed
via nearest-neighbor in-
terpolation.

(3)

Precipitation Global precipitation patterns and mea-
surements.

Includes time-slice data
from the year 2018 with
monthly resolution.

(2)

Temperature Temperature data and trends across dif-
ferent regions.

Includes time-slice data
from the year 2018 with
monthly resolution.

(9)

Carbon
Dioxide
Emissions

Data on CO2 emissions from various
sources globally.

– (6)

A.2 Extended Figures

A.2.1 Dataset Figures

Figure 4: Binary Land-Sea
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Figure 5: Coastline

Figure 6: Islands (in Dark Purple)
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Figure 7: Air Surface Temperature Plot (Jan. 2018)

Figure 8: Cumulative Precipitation Plot (Jan. 2018)
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A.2.2 Misc. Figures

Figure 9: Spherical Harmonics Encoding Prediction Plot

Figure 10: Spherical Wavelets Encoding Prediction Plot
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