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Abstract

Peptides and proteins are biomolecules that exist in a broad spectrum of size,
structure, and function. Both structure and function are defined by the underlying
sequence of amino acids, causing the polyamide to take three-dimensional confor-
mations when in solution. Despite significant efforts and advances in function and
conformation prediction, there remains a critical need for computational methods
to accurately infer protein function from sequence and structure. Recent advance-
ments in Graph Neural Networks have shown promise in learning the sequence
and structure of proteins. However, they fail to capture essential long-range de-
pendencies inherent in the complex and dynamic three-dimensional structures of
proteins, leading to issues including oversquashing and oversmoothing. Here, we
explore solutions to the challenge of capturing long-range dependencies in graph
representations of polyamides, focusing on latent nodes and graph rewiring tech-
niques. While graph rewiring enhances information flow between distant nodes,
latent nodes enable the concentration of global information. Our unified framework
combines these approaches to address the limitations of current methods, offer-
ing insights into protein function and regulation. Through experimental analysis,
we demonstrate the efficacy of our proposed methods in capturing long-range
dependencies.

1 Introduction

Proteins are biomacromolecules that serve as essential components within cells and play critical roles
in nearly every biological process, such as catalyzing metabolic reactions and transporting molecules.
Protein functions determine health outcomes and the progression of diseases, hence predicting the
functional properties of proteins is vital for developing new drug therapies. Protein design has emerged
as an integral aspect of pharmaceutical research, seeking to better understand the design principles that
form a basis for the structure and functions of proteins. This would enable the discovery of proteins
with properties that are key for therapeutic and technological applications. Graph Neural Networks
(GNNs) [14, 2] have emerged as a powerful tool for learning structural representations of proteins
and biomolecules [15} [5]]. Despite their success, GNNs exhibit clear limitations when confronted
with long-range dependencies due to the phenomena known as oversquashing and oversmoothing
[20] which diminish the expressive power of graph-based architectures. Such dependencies are
fundamental aspects of proteins’ structural and functional complexity, as inferred from their residue
interactions. These interactions play pivotal roles in stabilizing tertiary structures, facilitating ligand
binding, and orchestrating allosteric regulation [9} 12| [8]. Understanding long-range dependencies is
crucial for deciphering protein folding mechanisms, predicting protein structures from sequences, and
designing novel therapeutics targeting protein-protein interactions. Therefore, it is crucial to account
for such dependencies when modeling proteins with GNNSs, rising the need for more expressive
architectures that would account for distant interactions.
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Figure 1: Pipeline of our rewiring framework with the different steps detailed in Section 3]

To tackle the aforementioned limitations of GNNss, a set of approaches has been proposed, mainly
through the use of virtual nodes to reduce the commute time between any two given nodes [3], or by
changing the graph topology to allow for a better flow of information by optimizing some properties
related to graph bottlenecks: this is known as graph rewiring which has been recently investigated
[L6, 11} [1]. Despite the aforementioned recent advances in tackling long-range dependencies in
graphs, those are still under-explored for learning on protein structures. In this work we shed light on
the power of long-range techniques in representing protein structures for diverse tasks at the global
(protein) and local (residue) levels. More specifically, we propose a GNN-based rewiring scheme that
defines a set of trainable latent nodes to cover different regions of the protein. Our model then uses
the latent nodes as mediators to rewire the graph by attending distant nodes through attention-based
edge addition.

2 Background

Graph Neural Networks have become a key component in computational biology due to their ability to
represent complex molecular surfaces and learn useful interactions among the atoms in those systems.
A notable use-case is protein function prediction. In [7], Gliborijevic et.al present a graph-based
architecture that takes as input a protein structure and a sequence from a pre-trained language model.
The model predicts the function of the protein and the key residues in the sequence for that function.
Another important application is protein structure comparison which is crucial for structural homology
discovery and other downstream structure-based analysis. For this purpose, GraSR was introduced
in [19]] as a graph contrastive model to better learn global and local geometric features of residues.
Recent studies on molecular graphs discuss the importance of combining local semantics carrying
potentially critical information about graph substructures with graph-level features summarizing its
global topology [18, [13].

3 Graph neural networks for long-range dependencies in proteins

Consider a protein represented as a graph G’ = (X, A) whereby X € R"*? is the node feature
matrix and A € R™*"™ is the adjacency matrix. We provide a novel use-case based on attention-based
rewiring of protein structures and show its ability to boost the performance on graphs with long-range
dependencies. This approach is motivated by the fact that edge addition in general results in an
increased spectral gap and hence reduced bottlenecks in the network [4]. Adapting a pragmatic
approach on which edges to add is crucial to prevent oversmoothing by adding too many unnecessary
connections. We summarize the main steps of our architecture shown in Figure[T]

Step 1: Intra-atoms message passing. We begin by covering the local neighborhoods of the
protein, so we update the node representations based on their surrounding neighbors through a graph

convolution operation O, resulting in new atom embeddings h;,, € R"*/ .

Step 2: Protein-to-Latent Nodes message passing. We propose to fuse the local graph information

into a compressed global representation through message passing between the local embeddings &,

and a set of ¢ trainable latent nodes (LN) forming a graph G € R°*/ such that ¢ << n. Given the



embedding {h;,,}; for each node 7 in G and the initial latent embedding z, for a node ¢ € [1, |, we
perform an input-to-latent message passing:
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In this scenario, the input graph nodes in G and the latent nodes are considered to be part of a bipartite
graph. Each node in G is mapped to a latent node ¢, hence two or more nodes in G can be connected
to the same latent node. A total of | E| = n edges need to be added, alleviating some computational
cost in comparison with a Transformer where each node attends all other nodes. Instead, we use a
Graph Attention Network (GAT) [17]] to aggregate messages towards the latent components.

Step 3: Intra-LN message passing. The latent nodes then exchange information through fully
connected message passing i.e each latent node attends all other C' nodes as described below:
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This step ensures that latent nodes covering different ranges of the protein have interacted, providing
a solid global operator for protein representation.

Step 4: Attention-based rewiring through latent nodes. This methodology is based on the idea
that distant nodes need to communicate for a more effective global representation at the graph-level,
hence it uses attention as metric to quantify the importance of the interaction of two distant nodes
using the latent nodes as a mediator. In contrast to previous methods where rewiring is based on
pre-processed measures [16, (6], we perform rewiring in an end-to-end fashion in analogy to more
recent work [[1,[10] . To proceed, we use an additional GAT to perform message passing from the
updated latent nodes back to the input graph nodes {A; .} as described in Eq At this stage, we
select the the top ) nodes with the highest attention scores for edge addition among them. Finally,
we perform message passing on the updated graph using the new adjacency matrix G,e,, = (X, A')
st A" = A+ Qop. A pseudo-code is given in Algorithm [1}
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Readout: For the final classification task, we combine the information from the global summation
of latent node embeddings z,,; and that of the rewired graph embeddings h,.,, which are given by
Eq/] The final step consists of feeding the embeddings to a Multi-layer Perceptron (MLP) to get the
readout of the task. We find experimentally that combining the embeddings h,..,, from the rewired
graph with the latent node embeddings scaled by a hyperparameter A provides the best performance
as show in

hrew = Pi(hi}}, > Topg(a) x AGG(hy/)!, b)) 4
JEN(h)
Readout = MLP(hrew + A Zout) 5 Zout = Z % 5)

4 Experiments

The experiments in this study were conducted on several datasets to evaluate the model’s performance
across different tasks. For protein 3D structures, the model was validated on the EnzymeClass task
(predicting reaction types from the Enzyme Commission database) and binding site identification
using the PDBBind2020 dataset. Additionally, the model was tested on peptide datasets from the
Long Range Graph Benchmark (LRGB), focusing on graph classification and regression, where
amino acids were represented as nodes in peptide structures.



5 Results

Results on different protein-level and atom-level tasks are summarized in Tables[I|and [2] respectively.
It is shown as expected that adding multiple latent nodes to cover different regions of the proteins
boosts the performance relative to using the backbone alone. Further details on training is found in
Appendix |A] For the PDBBind dataset, we disregard the GCN-latent architecture given that as a node
classification task, and in contrast to the graph-level ones, we do not directly use the latent nodes in
the classifier, but rather only the messages propagating back from them.

Attention-based rewiring advantage: We highlight the improvement obtained by the rewiring
framework when using the GCN backbone. On all the benchmark datasets, GCN-Rewire performs
better than both the GCN backbone and the GCN model with multiple virtual nodes. On the Peptide
dataset, it surpasses other rewiring frameworks such as FOSR and LASER in addition the Graph
Transformers GPS and Exphormer. The advantage is especially shown on the binding site detection
task in the PDBBind dataset, which is the only atomic-level task. This can be explained by the success
of this method in attending distant residues whose communication potentially determines the overall
protein’s function. By doing so, it provides a solid combination of local and distant neighboring
features on the one hand through both features of hj,cq; and Ay, and the global features on the other
hand through the latent node features z,. We evaluated the model under different parameters and it is
found empirically that the best performance saturates around K = 6 latent nodes and () = 8 newly
rewired nodes.

Model Peptide-function Peptide-structure
Test AP 1 Test MAE |
GCN 0.5930 =+ 0.0023 0.3496 + 0.0013
GPS Transformer 0.6535 £ 0.0041 0.2500 + 0.0005
Exphormer 0.6527 £ 0.0043 -

FOSR 0.4629 + 0.0071 0.3078 + 0.0026
LASER 0.6447 + 0.0033 0.3151 + 0.0006
Transformer + PE 0.6326 + 0.0126 0.2529 + 0.0016
GCN-Latent 0.6211 4+ 0.0059 0.2723 + 0.0040
GCN-Rewire 0.6670 + 0.0024 0.2660 + 0.0043

Table 1: Performance of our rewiring framework on the LRGB datasets against numerous baselines.

Model EnzymesClass PDBBind
Type Graph-level Node-level
Test Acc 1 Test AUROC 1
GCN 73.33 £1.06 62.65 £ 0.13
GCN-Latent 74.22 £ 0.50 N/A
GCN-Rewire

Table 2: Performance of our rewiring framework on protein structure datasets.

6 Conclusion

In this work, we have proposed a unified framework to alleviate the phenomenon of oversquashing
that GNNs exhibit on proteins when dealing with long-range dependencies. The main components
of the framework include the use of latent nodes that cover different regions of proteins and a novel
use-case these latent nodes as a mediator for rewiring. We show that latent nodes can enhance the
performance on a given GNN backbone for the datasets under consideration. We also evaluate our
extension on the same dataset and show the additional boost it provides. Future work can make use
of this methodology to further extend its expressive power by trying more pragmatic approaches to
define the input to latent connections. It could also be interesting to explore the latent space exhibited
by the latent nodes for interpretability.
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A Dataset Summary

We report the properties of different datasets in the Table below. For training on all datasets, we
used the AdamW optimizer with the learning rates tabulated below. All experiments are done on an
NVIDIA Titan-RTX GPU and we report an average of 3 runs.

Dataset # of graphs Loss Function hidden dim Learning rate
Peptide-func 15,535 Cross-Entropy 300 0.0001
Peptide-struc 15,535 MSE 300 0.0001

PDBBind 2839 Cross-Entropy 150 0.0005
EnzymesClass 15,603 Cross-Entropy 150 0.0005

Structural Similarity 994 MSE 150 0.0005

Table 3: Dataset description
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Figure 2: Number of nodes across different ProteinShake Datasets

B Definitions

Effective resistance (ER) in a graph measures the resistance between two nodes when an electrical
current is passed through the edges. It quantifies how well-connected or isolated the nodes are and is
commonly used in network analysis to assess the flow of information or current within the graph.

Commute time (CT) in a graph represents the expected time it takes for a random walk or particle to
travel between two nodes, starting from one and reaching the other. It is a measure of the efficiency
of traversal within the graph and finds applications in various fields, such as computer science and
transportation planning.



Algorithm 1 Attention-based rewiring through latent nodes

Input: Graph G = (X, A)
Initialize: 0 < 0y, ¢ < ¢g, V. < rand(C, F)
repeat
Giy1 + GNNy(G;)  Backbone graph convolution
until i==7
Ve + GZ
d(V.) + Ve Fully-connected latent MP
Gz + ¢(V.);a € RE GAT from latent to input
Eoi +— maxg Select top-Q attention values
Eypa < concat(Eq, Eypq) Update adjacency matrix
repeat
Gjt1 < GNN,(Gz) wupdated GCN
until j==2




	Introduction
	Background
	Graph neural networks for long-range dependencies in proteins
	Experiments
	Results
	Conclusion
	Dataset Summary
	Definitions

