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Abstract

With the approach of the High Luminosity Large Hadron Collider (HL-LHC) era
set to begin particle collisions by the end of this decade, it is evident that the
computational demands of traditional collision simulation methods are becom-
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ing increasingly unsustainable. Existing approaches, which rely heavily on first-
principles Monte Carlo simulations for modeling event showers in calorimeters,
are projected to require millions of CPU-years annually—far exceeding current
computational capacities. This bottleneck presents an exciting opportunity for
advancements in computational physics by integrating deep generative models with
quantum simulations. We propose a quantum-assisted hierarchical deep generative
surrogate founded on a variational autoencoder (VAE) in combination with an
energy conditioned restricted Boltzmann machine (RBM) embedded in the model’s
latent space as a prior. By mapping the topology of D-Wave’s Zephyr quantum an-
nealer (QA) into the nodes and couplings of a 4-partite RBM, we leverage quantum
simulation to accelerate our shower generation times significantly. To evaluate our
framework, we use Dataset 2 of the CaloChallenge 2022. Through the integration
of classical computation and quantum simulation, this hybrid framework paves way
for utilizing large-scale quantum simulations as priors in deep generative models.

1 Introduction

The High-Luminosity Large Hadron Collider (HL-LHC), expected to be operational by the end of
this decade, will offer unprecedented opportunities to measure the Higgs boson properties, explore
the Standard Model in greater depth, while also searching for physics beyond the Standard Model [1]
A critical component of this endeavor is the vast amount of data obtained from numerical simulations,
which play a crucial role in both the design of future experiments and in the analysis of current ones.
These simulations, done with Geant4 [2, 3], accurately describe the collisions at the Large Hadron
Collider (LHC). But this comes at the price of being computationally intensive. These simulations
describe the interactions between detectors and primary particles, but also account for the interaction
with secondary particles produced as the primary particles interact with the detector material. Such is
the case with calorimeters, which measure energy deposition from showers of secondary particles.
Current projection for the HL-LHC run estimate millions of CPU-years per year [4]. Simulating one
single event with Geant4 in an LHC experiment requires approximately 1000 CPU seconds, with
the calorimeter simulation being the most resource-intensive module [5]. Through the generation
of these showers, non-negligible computational resources are being employed in keeping track of
these particles. Deep generative surrogates are being developed to model the particle-calorimeter
interactions in the simulation pipeline, potentially reducing the overall time to simulate single events
by several orders of magnitude. Examples of these are Generative Adversarial Networks [6–8], which
are now an integral part of the simulation pipeline [9, 10]. Similarly VAEs [4, 11, 12], Normalizing
Flows [13, 14], Transformers [15], Diffusion models [16–18] and combinations thereof [19–22],
where the last reference combines a VAE with a two-partite quantum annealer (QA). The framework
combining VAE with QAs has also been used in different contexts [23, 24].

Figure 1: (a) Calochallenge dataset showers are voxelized using cylindrical coordinates (r, φ, z). For
any given event, each voxel value corresponds to the energy (MeV) in that vicinity. Each layer has
144 voxels composed of 16 angular bins and 9 radial bins. The data set is parsed onto a 1D vector
with 6480 voxels per each event. (b) Visualization of the voxels in an event in the dataset.

2 Methods

We illustrate our framework by using Dataset 2 of the CaloChallange-2022 [25]. This dataset consists
of 100k Geant4-simulated electron showers ranging from 1 GeV to 1 TeV incident particle energy,
sampled from a log-uniform distribution. The voxelized detector is in the form of a concentric cylinder
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with 45 layers in the axial direction of which each layer is made up of an alternating collider-absorber,
active (silicon) and passive (tungsten), material. Each layer consists of 144 voxels (volumetric pixels),
9 radially and 16 in the angular direction to yield a total of 45 x 16 x 9 = 6480 voxels in one event as
shown in Fig. 1. Each event has its corresponding incident particle energy as its label. We preprocess
the data similar to [19], except we omit the last step where the new variable is standardized. Instead
we apply a shift to the logits to preserve the sparsity of the shower in the new variables, i.e., the new
variable is zero whenever the voxel energy is zero.

Figure 2: (a) Overview of Calo4pQVAE training architecture. Preprocessed voxels of a shower, x
and their corresponding incident energies, e are inputted to the encoder. The encoder compresses
the energy-conditioned shower into 4 partitions, of which 3 are generated from the hierarchies of
the encoders and 1 is an encoded conditioning of the incident energy. The conditioned RBM is
trained to learn these representations, then the concatenation of the 4 partitions is the latent vector that
gets passed through the hierarchical decoder, generating a hits and activations vector to reconstruct
the shower. (b) Once the model finishes training classically, the states of the trained RBM with
an incidence energy conditioning is loaded onto D-Wave’s Zephyr quantum annealer to sample a
latent vector that is then passed through the hierarchical decoder to generate a shower. (c) The
hierarchical decoder consists of 9 sub-decoders, each generating 5 layers to make up a total of 45
layers and conditions subsequent layers of the shower based on previous layers to simulate the
physical propagation of particle scattering in the calorimeter through the evolution of the shower.

Our model is a variational autoencoder [26] with a 4-partite conditioned restricted Boltzmann machine
[27] as the prior, as illustrated in Fig. 2 (a) . We used a hierarchical encoder composed of three sub-
encoders. These hierarchy levels enforce couplings among latent units by introducing conditioning
among latent nodes. In addition, these hierarchy levels introduce skip connections akin to residual
networks [28]. We feed the encoded sample from each of the three sub-encoder outputs to three
of the partitions in the RBM, while the fourth partition is used to condition the RBM. The RBM
condition parameter is the binarized incident particle energy of the event. The prior is the 4-partite
restricted Boltzmann machine, where the connections between nodes mimic the Zephyr topology of
D-wave’s QA [29]. The encoded sample is then fed to the hierarchical decoder, as shown in Fig. 2
(c) where n sub-decoders are allocated to generate 45/n layers per sub-decoder. The hierarchical
decoder conditions subsequent layers of the shower based on previous layers through hierarchies
of auto regressive sub-decoders to simulate the physical propagation of particle scattering in the
calorimeter during the evolution of a shower. The hierarchical decoder in Calo4pQVAE consists of 9
subdecoders, each generating 5 layers, making up the entire 45-layer voxelized shower. The decoder
outputs a mask vector and an activation vector, and their Hadamard product yields the generated
shower. We use the Gumbel trick [30] in our framework to generate both the encoded shower as well
as to generate the output mask. Our code is publicly available and can be found here [31].

3 Results

We trained our model classically for 100 epochs via the evidence lower bound (ELBO) function
similar to [21], set the number of Gibbs sampling steps for the RBM to 3000 and used contrastive
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Figure 3: (a) Saturation of RBM log-likelihood vs epochs. Yellow star - freezing of encoder and
decoder, Red star - completion of model training. (b) QA inverse temperature estimation vs iterations.
(c) RBM energy histogram for classical and QA samples.

divergence [32]. During the first 45 epochs we linearly annealed the activation function slope used
in the Gumbel trick, from 5 to 500. Afterwards, we continued the training for another 45 epochs,
afterwards we froze the encoder and decoder parameters and continued training the prior up to 150
epochs in total. The model was trained using NVIDIA RTX A6000. We validate our model using
D-wave’s Advantage2_prototype2.3 for inference. It has been well documented how QAs can reach
a freeze-out state [33], akin to glass-forming melts under a fast quench [34]. Despite this, it has
been shown that the distribution in this freeze-out state can be approximated with a Boltzmann
distribution [23]. We estimate the effective inverse temperature of the QA by means of a mapping
with an attractive fix point at the QA’s effective inverse temperature. This mapping is robust and
converges faster than the method used in [21]. In Fig. 3 we show, (a), RBM log-likelihood vs epochs
estimated via (reverse) annealed importance sampling [35, 36], (b), a set of iterations to estimate
the QA effective inverse temperature and, (c), the RBM energy histograms obtained from classical
Monte Carlo and QA sampling.

Figure 4: Normalized histograms comparing Geant4 simulated data (ground truth) and Calo4pQVAE’s
reconstruction, classically sampled synthetic data, and quantum annealed (Zeyphr) synthetic data
for 10k events in: (a) sparsity index, ratio of non-hit voxels over all voxels in a shower, (b) energy
per event, sum of all voxel energies in a shower, and (c) granularity, randomly shifted differences in
voxel energies along angular and radial bins in a shower.

In Fig. 4 we show the histograms for sparsity index (defined as the ratio between zero-energy voxels
and total number of voxels), the energy per event and the shower standard deviation of the shower
angular fluctuation, for ground truth, reconstruction, classical samples and QA samples. In Fig. 5 we
compare the mean energy along the radial, angular and axial axis between the ground truth and our
model. In Table 1 we present the Fréchet physics distance (FPD) and the Kernel physics distance
(KPD) scores between our synthetic data and the Geant4 data, using the JetNet package [37]. These
values are within the limits of the models analyzed in the CaloChallenge [38]. There are additional
metrics as part of the CaloChallenge that we will consider as an immediate continuation of this work.

Model FPD (×10−3) KPD (×10−3)

Calo4pQVAE 1399.48± 9.70 15.94± 1.02

Table 1: FPD and KPD values for Calo4pQVAE.
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Figure 5: Solid vs dotted line plots comparing Geant4 simulated data and classical Calo4pQVAE’s
classically sampled synthetic data for 100k events. (a) Mean energy deposit per layer, (b) angular
and (c) radial bin. Relative and absolute errors for each parameter are shown underneath each plot,
respectively.

4 Conclusion

In this paper we presented our 4-partite quantum-assisted deep generative model for calorimeter
synthetic data generation. This framework provides competitive performance for simulating particle
showers at the LHC experiments while running extremely quickly on D-wave quantum annealers.
The quality of the synthetic data is average compared to other approaches [16, 19]. This may be due
in part to the sparse connectivity of the RBM, which mimics the QA connectivity. In addition to
RBM connectivity, our framework could benefit from using attention layers similar to [19], which we
leave for future work. Furthermore, Ref. [22] presents an improved model that reaches KPD and
FPD values of the order of 0.9 · 10−3 and 450 · 10−3, making our framework competitive compared
to the frameworks analyzed in the CaloChallenge [38].

The generation time using GPU is dominated by the block Gibbs sampling steps to reach equilibrium.
However, the number of steps to reach equilibrium is strongly dependent on training [39]. In our
framework, we used 3000 steps, which is more than typically used. Under these conditions, the
generation time per event using GPU is roughly 500 times faster than Geant4. Although the annealing
time per sample using QPU is 20 µs, there is technical overhead. Under the previous conditions,
the generation time per event using QPU is roughly one order of magnitude faster than using GPU.
A more rigorous analysis is required in this comparison, due to the nuances involved in estimating
the generation time using QPU and using GPU, and since our preliminary results indicate that they
differ by one order of magnitude. We leave this for future work and reiterate that our framework is
significantly faster than Geant4. In conclusion, our work on Calo4pQVAE demonstrates the utility
of hybrid classical and quantum frameworks in generative AI. This hybrid framework opens new
opportunities for leveraging large-scale quantum simulations as priors within deep generative models
for high-energy physics and potentially beyond.
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