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Abstract

For the analysis of Imaging Air Cherenkov Telescopes (IACTs) data, numerous
air shower simulations are needed to derive the instrument’s response. A process
that is both computationally intensive and often requires repetition under varying
observation conditions. Generative models based on deep neural networks offer
an ultra-fast and more efficient alternative, significantly accelerating simulation
times while compactly storing vast simulation libraries. Previous works focused
on the generation of gamma showers; however, mostly proton showers need to
be simulated for a good background description that features larger fluctuations,
making their generation significantly more challenging. In this study, we employ
diffusion models to generate proton showers for an IACT with nearly 2,000 pixels.
Using simulations from the H.E.S.S. experiment, we assess the quality of the gen-
erated images via low-level observables and established shower shape parameters.
While the generated images demonstrate high-quality low-level properties, further
refinement is needed in modeling distinct shower shapes.
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1 Introduction

Over the past two decades, arrays of Imaging Air Cherenkov Telescopes (IACTs), like the High
Energy Stereoscopic System (H.E.S.S.) [1] changed our understanding of the very-high-energy (VHE)
gamma-ray sky. These telescopes image Cherenkov radiation emitted from secondary particles in
extensive air showers induced by cosmic particles. The IACT images are then analyzed to extract
information about the primary particle [2].

Accurate gamma-ray measurements require extensive Monte Carlo (MC) simulations [3, 4] to thor-
oughly understand instrument performance, particularly for the hadronic background, outnumber
gamma rays by 1 to 103 − 104. Running millions of events for different observation conditions is
time-consuming and memory-inefficient. Recent advances in machine learning, particularly gener-
ative models, provide new methods for tackling the challenges of acceleration and refining [5, 6]
of high-dimensional simulation data [7–9]. In particle physics, Generative Adversarial Networks
(GANs)[10–13], normalizing flows[14, 15], and diffusion models [16–20] have been used to acceler-
ate simulations significantly with minimal loss of accuracy. To meet the computational demands of
upcoming observatories like the Cherenkov Telescope Array (CTA)[21], recent studies have explored
the efficient generation of IACT parameters and images using GANs[22–25]. Initial results are
promising [26], but generating high-resolution IACT images with comprehensive fidelity for hadronic
showers remains challenging.

Inspired by the application to calorimeters [19, 27], we use score-based diffusion models [28] in
this work to generate proton IACT air shower images, using simulations from the H.E.S.S. CT5
telescope with its FlashCam design [29]. Since stereoscopic integration is an ongoing challenge in
deep learning [30–34], we focus on single-telescope images.

2 Diffusion models for the generation of IACT images

Diffusion generative models have shown state-of-the-art quality in image synthesis and promising
performance as fast surrogate models for expensive physics simulations. In particular, diffusion
models used to reproduce the detector response of calorimeters in collider experiments such as
CALOSCORE [19, 27] have shown improved fidelity compared to previous machine learning ap-
proaches. Diffusion models are trained by adding a time-dependent perturbation to the data x such
that:

xt = α(t)x+ σ(t)ϵ, (1)

where ϵ ∼ N (0, 1). The role of the network vθ with trainable parameters θ is to perform an indirect
denoising of the data by minimizing the loss:

L = Ext,t ∥vt − vθ(xt, t)∥2 , (2)

with time parameter t ∼ U(0, 1) and velocity parameter vt defined as vt ≡ αtϵ − σtx. A cosine
schedule is used for the perturbation parameters with αt = cos(0.5πt) and σt = sin(0.5πt), satisfy-
ing α2 + σ2 = 1 for all time values. Sampling is then performed using the DDIM [35] sampler with
X time steps.

A U-Net [36] model with attention layers [37] in the lower dimensions is used as the backbone
network for the diffusion process on the pixel data. As observed in CALOSCORE, we can improve
the generation quality by breaking down the model into two components. The pixel model learns
to generate normalized images, where the sum of all pixels is set to unit for all input images. A
second model based on the RESNET [38] architecture is then used to learn the overall normalization,
improving the description of the energy deposition. Additional features, such as the impact parameters,
are also included in the second model to improve the angular description of the incoming showers to
be simulated. In this strategy, we first sample the overall normalization and impact parameters and
use this information to condition the generation of the images.

Our diffusion model was trained for 500 epochs on eight A100 GPUs, which took about 9 hours. We
used roughly 430 k images for training and validation with an 80:20 split. For the generation of new
images, the energies of the test data sets are input to the diffusion model. This generated a set of 76 k
IACT images in about 3 hours. In the following section, these generated images are compared to the
test data images.
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Figure 1: Comparison of four IACT images from the simulated test data set (top) and the generated
data set (bottom). The simulated images are hand-picked to show various air shower characteristics
while the four generated images are the next neighbors (in MSE).

3 Analysis of generated IACT images

After the IACT images are generated, the normalization is reverted and a post-processing function is
applied. This function includes the removal of low-value noise, clipping of high pixel values, and
the removal of low-signal images that do not fulfill the cut of 250 photoelectrons (p.e.). Both the
simulated test data set and the generated data set contain about 76 k images each. To demonstrate
that the generated images are similar to the simulated images, we study several aspects of the images.
The generated images are inspected regarding their visual quality by qualitatively comparing typical
air shower characteristics. After that, various parameters describing the images are investigated
using high and low-level data. The analysis is carried out using the open-source tool ctapipe [39]
(v0.21.2 [40]).

We show four images from the simulated test data set and the generated data set in figure 1. The
simulated images are handpicked to show the various air shower characteristics that can appear in
IACT proton images. Using the smallest pixel-wise difference in MSE, generated images are picked
that are similar to the chosen simulated images. The images in the first two columns show elliptical
signals that are almost completely detected by the camera. In the third column, the structures of the
signals are more noisy and they are also highly truncated. The last two images show an example
of a signal covering almost the whole camera. This comparison shows that the typical air shower
characteristics can also be found in the images generated with the diffusion model.

Investigation of various image parameters After looking into the visual quality of the generated
images, various image parameters characterizing the properties of the images need to be studied. In
the following, four different parameters are analyzed, two low-level and two high-level parameters.
The low-level parameters, also in this work referred to as pixel parameters, are the image size — the
integrated signal of an image — and the pixel values. The high-level parameters are obtained from the
so-called Hillas parameterization [2], which is a commonly used analysis procedure of IACT images
in gamma-ray astronomy. The basic idea of this method is to parameterize the typically elliptical
Cherenkov signal on the image, using the pixel locations and their signals. These parameters are used
to analyze photon images, but they can also be used for the analysis of proton images with their more
chaotic signals. Usually, the so-called tail-cut cleaning [41] — a two-threshold filtering algorithm —
is applied to the IACT images to remove night sky background light, which does not belong to the
Cherenkov signal. Furthermore, after the cleaning, another image size cut of 250 p.e. is applied to
filter out low-signal images.
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Figure 2: Distributions of two low-level parameters: the image size and the pixel values (top) and
two high-level parameters: the polar coordinate and Hillas length (bottom) for the simulated test data
set (gray) and the generated data set (black).

The pixel parameters, which are shown at the top of figure 2, are investigated, as they give direct
information about the predictions of the diffusion model. For the image sizes, which are obtained
from the second model, the distributions for both data sets match generally very well with some
minor differences present at the highest and lowest values. From the main model, the pixel values
are obtained using the image size from above and the air shower impact point as input. The values
range from about −3 p.e. to 4176 p.e., with the higher value being the saturation value of the used
photomultiplier tubes (PMTs). Overall, this shows that the diffusion model can learn the low-level
features of the IACT images.

Out of all the possible Hillas parameters, the distributions of two of them are shown at the bottom
of figure 2. The polar coordinate gives information about the location of the signal on the image
and it is evident that the distributions for the simulated test data set and the generated data set match
quite well. Even though the distribution contains six peaks, which correspond to the corners of the
camera, the model shows no problem in learning this feature. However, the distributions of the other
parameter — the Hillas length, which is the length of the major axis of the elliptical signal — show
minor differences when comparing both data sets. This implies that the generation of an accurate
signal shape is still moderately difficult for the model. So, while the diffusion model is already able
to implement the physical shower characteristics on a high level into the images, it is still challenging
for it to learn and generate all features correctly. Since the Hillas parameters play a key role in the
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analysis of IACT images, it is necessary to carry out more studies to improve the generated Hillas
parameter quality and, thus, the quality of the generated images themselves.

4 Summary

We employed diffusion models in this work to generate air-shower images taken by IACTs. Our
approach used simulations of the CT5 telescope at H.E.S.S., featuring a modern camera design with
close to 2000 pixels, developed for CTA. Our method integrates the traditionally separated simulation
of the air shower and the instrument response into a seamless end-to-end approach. In contrast to
previous work that focused on gamma-ray showers, we investigated the generation of proton images
that feature larger fluctuations and are more challenging to model. By utilizing score-based diffusion
models, we generated the first images of proton showers using deep generative models.

The generated images are of promising quality. The studied low-level parameters showed good
agreement with simulations. A high-level evaluation of the signal shapes using the Hillas parameters
showed promising prospects. Whereas some shape variables are described well, the tail of distinct
shape variables, like the Hillas length, are not well modeled, and more research is needed to yield
models able to generate images of the whole phase space.

A current limitation of this work is the generation time. In comparison to image generation using
GANs [26], the used approach requires (≈ 104) larger generation times and shows speedups in the
order of 10 in comparison to the simulation. Future work will focus on accelerating the generation
times of diffusion models [42–44].
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