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Abstract

We improve upon the existing literature of denoising techniques studied at the Large
Hadron Collider (LHC) for the task of disentangling proton-proton collisions. The
primary technique that serves as the foundation for this work is known as Training
Optimal Transport using Attention Learning (TOTAL). The TOTAL methodology
relies on the use of a transformer architecture using a loss function inspired by
optimal transport problems to learn full event descriptions. By comparing matched
samples with and without noisy interactions present, the TOTAL network robustly
learns an accurate description of noise as a transport function without any need
for assumptions of the nature of noise derived from simulations. In this work, we
develop an improved version of TOTAL known as Weakly-supervised Optimal
Transport Attention-based Noise Mitigation (WOTAN) by reducing the degree of
its self-supervision. The reduction of the self-supervision allows us to demonstrate
the power of optimal transport-based denoising in being able to use data for particle
classification instead of solely simulations. In spite of the reduced supervision, our
work still outperforms existing conventional pileup mitigation approaches. Such
an extension of the TOTAL methodology allows for more robust denoising, one
that would truly be the first fully data-driven machine learning denoising strategy
at the LHC.

1 Denoising at the Large Hadron Collider

A collision of proton bunches occurs every 25 nanoseconds at the Large Hadron Collider (LHC)
at CERN; each possibly holding the key to expanding our current understanding of the world at
the subatomic level either through precision measurements of key values of the Standard Model or
searches for beyond the Standard Model processes. A data instance at the LHC is known as an event
and corresponds to a bunch crossing of protons, yielding showers of energetic particles. On average,
during the latest run of the LHC, approximately 50 simultaneous interactions, yielding charged and
neutral showers collectively known as pileup vertices, were recorded per event. This number is
expected to only increase at the High Luminosity LHC with predicted values as high as 200 (1). With
such a high rate of data collection, the task of denoising naturally proves to be a formidable one. Not
only is there systematic noise resulting from detector effects, but the aforementioned simultaneous
interactions exist as physical processes of low enough data quality that are not usable for searches or
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precision measurements. The vast majority of search analyses and precision measurements are reliant
on accurate determinations of particles stemming from the primary interaction. As such, removing
simultaneous interactions from data presents a salient problem that, if not checked, hinders the search
for new physics as well as Standard Model precision measurements.

1.1 Existing Methodologies

As the noise sourced from noisy interactions continues to scale up, the existing data analysis pipeline
struggles to keep pace in outputting results with the highest sensitivity possible. This swelling need
for more effective and efficient rejection of particles from noisy interactions has directly contributed
to the burgeoning sector of dedicated denoising literature within the context of the LHC. The current
detectors at the LHC are well-designed to discriminate charged particles originating from noisy
interactions due to superior spatial resolution of their respective tracking systems. Thus, the task
of noise mitigation need only be restricted to that of neutral particle discrimination. Currently, the
leading conventional denoising algorithms such as PUPPI (2) are focused on tackling the problem
using a similar strategy to charged noise mitigation in that the rejection of noisy particles is done
using sets of physics-motivated rules to generate per-particle probabilities on whether the particle
originates from a noisy interaction or not. A key limitation of such rule-based approaches is the
need to assume a consistent definition of noise either through kinematic selections or through MC
simulations. In either case, deviations from the truth can cause significant mismodeling of the data
and ineffective denoising.

2 Optimal Transport as a Solution

In order to avoid the limitations of rule-based denoising, significant work has been done to build
new, more accurate models using machine learning, which can utilize more low-level information
to output more realistic decisions. Such attempts include using image recognition techniques (3),
graph neural networks (4), or transformers (5) to identify reweight particles likely to have arisen from
noisy interactions and have proven to be more effective than conventional approaches. Despite their
success, these existing ML implementations are limited by being fully-supervised models. Thus,
they require accurate labels for each particle as to whether they originate from a noisy interaction or
not. For studies with simple, limited detector simulations, this prerequisite is serviceable. However,
the techniques do not translate well to more complex simulations, let alone real data as the physical
granularity of detector systems would obfuscate any accurate definition of ground truth labels. For
the aforementioned ML denoising techniques, the lightweight simulations are done in a software tool
known as DELPHES (6), in which one identify whether a particle originated from a noisy interaction
or not. However, in a full-scale simulation setup as with Geant4 (7), the realistic reconstruction makes
the labeling of noisy particles ambiguous.

2.1 TOTAL

Despite the plethora of existing denoising strategies researched for the LHC, both the conventional
and supervised ML denoising strategies have glaring shortcomings that hamper their effectiveness.
To counter these limitations, a self-supervised approach using low-level information leveraged by
an optimal transport setup was developed. Known as Training Optimal Transport using Attention
Learning (TOTAL, (8)), the TOTAL methodology relies on the use of a transformer architecture (9)
using a loss function inspired by optimal transport problems to learn a mapping between two samples,
one containing only particles from the primary interaction (clean) and the other also containing noisy
particles in addition to the particles from the primary interaction. The mechanics of the denoising done
by TOTAL is described in the following section. Unlike other conventional or even ML alternatives,
TOTAL does not require any assumptions of the nature of noise derived from simulations. TOTAL has
already proven to outcompete existing conventional denoising techniques. Furthermore, by avoiding
reliance on a ground truth or assumptions of noise derived from simulations, TOTAL proves to be far
more successfully operable out of the box than its competitors in addition to its superior performance.

2.1.1 Implementation

The key to the success of the TOTAL methodology lies in the self-supervision provided to the trans-
former by the optimal transport-based loss function. Instead of relying on truth labels of each particle
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as required by our supervised competitors, TOTAL utilizes a loss function that determines the optimal
set of labels that transforms the whole noisy sample into the clean sample. Our implementation relies
on the Wasserstein distance for this discrimination by leveraging geometric information present in
the feature space of both samples to estimate their distance as seen in Equation 1. However, the
Wasserstein distance only has a closed form solution in one dimension, leading to poor scaling in
terms of computational complexity for higher dimensions. The sliced Wasserstein metric (SWD)
allows us to approximate the full Wasserstein metric as an integral over one-dimensional transport
problems.

L = SWD(x′n, xc) + λMSE(pmiss
T (x′n), p

miss
T (xc)) (1)

Here, xn = xnoise + xc refers to the full sample inclusive of particles from both the primary
interaction as well as noisy ones, while xc refers to the sample only containing particles from the
primary interaction. Additionally, pmiss

T denotes the missing traverse momentum of a sample, a key
sample-level kinematic that accounts for particles unable to be directly reconstructed.

The model outputs a set of weights ω ∈ [0, 1] for each particle, such that particles from noisy
interactions are given weights closer to zero and particles from the primary interaction occupy values
closer to one. The weights are learned by minimizing the SWD as function of x′n = ωxn and xc
with the model being only given a limited set of kinematics for each particle (pT , η, ϕ, charge). The
second term in Equation 1 allows us to add additional physics constraints to the loss calculation via
the mean square error (MSE) between the missing transverse momentum pmiss

T of each sample.

2.2 WOTAN

While TOTAL has demonstrated significant improvement over conventional rule-based techniques
such as SoftKiller and PUPPI, it is not without its limitations. Chiefly, TOTAL requires that at each
training instance, xn and xc correspond to the exact same sample. However, this is only achievable in
simulations. To push TOTAL to be a fully data-driven denoising technique would require the ability
to compare xn and xc from two independent samples. In the existing TOTAL methodology, no longer
requiring that xn and xc are from the exact same physical event leads to a reduction in the available
information given to the model as the primary interaction between compared samples is no longer
guaranteed to be the same after the aforementioned shuffling. Thus, we introduce Weakly-supervised
Optimal Transport Attention-based Noise Mitigation (WOTAN). WOTAN rewrites the input data
into a batch as an ensemble of samples to mitigate the information loss from comparing independent
samples.

L = SWD(ψ′
n, ψc) + λMSE(pmiss

T (ψ′
n), p

miss
T (ψc)) (2)

Unlike in Equation 1, we no longer compare single samples xn and xc, but instead ensembles
of individual, independent samples ψn and ψc. The mathematical difference explicitly manifests
when looking at the dimensions of the inputs into their corresponding loss function. In Equation
1, xn and xc are of size Nbatch × Nparticles × Nfeatures. In Equation 2, ψn and ψc are of size
(Nbatch × Nparticles) × Nfeatures. Now transformed into ensembles of individual, independent
samples, the inputs are flattened and the loss is calculated per ensemble or now equivalently per
batch. In doing so, the model is able to see a single ensemble of all samples in the batch, mitigating
the information loss resulting from TOTAL post-sample shuffling. By being able to compare and
denoise independent samples, WOTAN supersedes TOTAL in applicability to the real world as a
fully data-driven technique, not requiring any level of ground truth information and thus is able to be
trained directly on data without any need for simulations.

3 Dataset

The results of this study were generated using the simulated PUMML dataset (10). The particular
signal is q-qbar light-quark-initiated jets from the decay of a Higgs-like scalar particle. The noisy
interactions were generated by overlaying soft QCD on top of the aforementioned signal. The dataset
comes in two flavors, one with a set count of simultaneous interactions (µ = 140) and a varied scalar
mass and another with a varying count of simultaneous interactions and a set scalar mass (500 GeV).
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The study was done using the latter dataset with simultaneous interaction counts between 140 and
145.

4 Results

For physics experiments such as the LHC, denoising exists as a means to an end. Cleaning the data of
undesired noisy interactions is only a partial step towards any search for new physics or a precision
measurement. Regressing any important physics observables for these types of analyses from the
remaining data is a non-trivial task as desired signals still remain buried beneath high rates of known
physics-processes. Without effective denoising, the physics program at the LHC would suffer greatly
from poor sensitivity to desired signal processes. It is for this reason that the most effective method
to assess the quality of a denoising technique is in its ability to recover unbiased regressions of key
physics observables. One such observable is the average transverse momentum of the most energetic
collimated collection of particles in a sample. Known as a jet, the shower of particles produced by the
hadronization of quarks and gluons are key features in many interesting physics processes and thus an
accurate regression of related jet observables are critical for the success of many studies at the LHC.

Figures 1a and 1c demonstrates how both the leading rule-based denoising techniques (SoftKiller
(SK) and PUPPI) and WOTAN are able to reweight particle kinematics to recover the true leading
jet pT and mass distributions, albeit WOTAN showing superior regressive results. We also can
see how WOTAN performs in comparison to TOTAL both with and without sample matching. As
expected, shuffled TOTAL (without sample matching) performs significantly worse than all of the
other denoising techniques. Even though WOTAN does not best TOTAL with sample matching,
we must realize that the former is correcting the shuffled distribution to a degree better than PUPPI
without requiring the nonphysical supervision of sample matching. Both the TOTAL and WOTAN
results are averaged over five independent trainings to best represent its Rashomon set. Since both
SK and PUPPI are functional and thus deterministic methodologies, this is not necessary. To better
visualize WOTAN’s performance, we look at the response of the leading jet pT and mass resolutions.
As shown in Figures 1b and 1d, WOTAN is able to recover unbiased responses in situ unlike SK or
PUPPI, which requires significant manual tuning to achieve similar results.

5 Conclusions

WOTAN is a fully-data driven denoising technique for the LHC, allowing for the identification and
subsequent rejection of particles from simultaneous interactions. By comparing ensembles of samples
with and without noise present, WOTAN robustly learns a description of noise as a transport function,
which can be used to reject particles from noisy interactions in a weakly-supervised manner. As
shown, WOTAN proves itself above both its conventional and ML-based denoising competitors on
three fronts. Firstly, WOTAN is able to show noticeable improvements in terms of regressing key
observables by reweighting particles from noisy interactions. Secondly, WOTAN does not rely on any
ground truth labels or assumptions of noise based on simulations. This provides WOTAN with the
unique property of being able to be trained directly on data. Lastly, WOTAN generates per-particle
labels for its noise mitigation in situ and thus does not require any manual tuning unlike conventional
competitors like SK and PUPPI. While WOTAN has proven its success here for denoising tasks for
particle collider experiments such as the LHC, the technique is theoretically equally powerful in other
contexts, provided that a comparison between noisy and clean samples can be provided. Thus, we
encourage our colleagues in other areas of the physical sciences to test WOTAN in their experiments.
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