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Abstract

Depositional ice growth is an important process for atmospheric cloud formation,
but the physics of ice growth in atmospheric conditions is still poorly understood.
One major challenge in constraining depositional ice growth models against obser-
vations is that the early growth rates of ice crystals cannot be directly observed, and
proposed models require assumptions about the functional dependence of physical
processes that are still highly uncertain. Neural ordinary differential equations
(NODE’s) are a recently developed machine learning method that can be used
to learn the derivative of a hidden state. Here we explore how NODE’s can be
used to evaluate model structural uncertainty in depositional ice growth models by
optimizing against experimental measurements. We find a functional form for the
depositional ice growth model that best fits 290 mass time series of ice crystals
grown in a levitation diffusion chamber. We use symbolic regression to derive a
closed-form equation for the function learned by the NODE model.

1 Introduction
Scientific machine learning for discovering unknown physics directly from observations has demon-
strated significant promise in recent years [1, 2, 3]. Approaches such as physics-informed neural
networks (PINN’s) [4] can be leveraged to integrate observational data with known governing physical
laws, even in cases with partially unknown physics. PINN’s learn the solution of ODE’s or PDE’s
using neural networks, with the loss function formulated to include data mismatch and gradients of
known ODE’s or PDE’s. Neural ODE’s (NODE’s) integrate neural networks parameterizing a hidden
state with numerical ODE solvers to learn a continuous depth model for a physical system [5].

The growth of ice crystals from vapor is an important microphysical process impacting cloud
formation. However, significant gaps in our understanding of depositional ice growth, particularly
the early growth of ice crystals in clouds, continue to limit our ability to accurately model these
processes in atmospheric models [6, 7]. Early growth is particularly hard to constrain because this
growth connects freshly nucleated particles to larger faceted crystals. These small ice crystals (radii
< 50 µm) undergo various surface transformations as habit forms develop, affecting the growth rates.

Structural and parametric uncertainty in ice growth models has been difficult to address [8]. Structural
uncertainty refers to uncertainty in the functional dependence of a physical model, while parametric
uncertainty refers to uncertainty in parameter values. While depositional ice growth is typically
represented in cloud and climate models with capacitance theory [9], the early stages of ice growth
leading to the formation and growth of facets is determined by surface attachment kinetics, which are
poorly constrained by current theories, observations (those made in clouds), and lab measurements.
Measurements from different experimental studies sometimes show large disagreement [10, 11],
although recent work has suggested these studies can be reconciled with a saturation and temperature
dependent functional form for surface attachment kinetics modeled as a deposition coefficient [12, 13].
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Figure 1: Overview of methodology for learning unknown physics in depositional ice growth
models.

Here we use scientific machine learning to reduce structural uncertainty in depositional ice growth
models. The contributions of our paper are as follows:

• We develop a methodology to learn the functional dependence for an ordinary differential
equation (ODE) by optimizing a NODE across multiple time series simultaneously. We
compare strongly-constrained and weakly-constrained NODE models, based on the amount
of prior physical knowledge that is included.

• We apply this method to experimental observations to learn a mathematical model for
the depositional ice growth rate and use symbolic regression to discover a closed form
expression for the non-linear relationship learned by the neural network.

1.1 Data sets
Here we explore how scientific machine learning can be applied to observations of ice crystals grown
in a levitation diffusion chamber at temperatures between 205 - 240 K and saturation with respect
to ice between 1.0 and 1.8 [14, 15, 16]. During experiments, single ice crystals with initial radii
between 6 and 12 µm are nucleated, levitated, and grown from vapor in constant saturation Si and
temperature T conditions. Observations consist of 290 time series of the mass ratio (m/m0) of
individual ice crystals, where m is the mass of an ice crystal, and m0 is its initial mass. The crystals
remain relatively small, with equivalent spherical radii < 60 µm. Since mass ratios have varying
durations (depending on how efficiently the ice crystals grow), we interpolate observations to 1 Hz
and crop all data sets to a maximum time-length of 500 seconds.

In addition to the experimentally observed ice crystal mass ratios, we create a synthetic data set
with a known functional dependence for the depositional growth rate to validate the performance of
our equation discovery method. This synthetic data set consists of 290 mass ratios of ice crystals
growing in the same saturation and temperature conditions and with the same initial mass, but with an
assumed functional form for the depositional ice growth model based on Nelson and Baker, 1996 [17].
Realistic measurement noise is added to the synthetic time series by using the trailing eigenmodes of
a singular spectrum analysis decomposition applied to the observed time series. Additional details
about experimental and synthetic data sets are given in Appendix Sections A.2 and A.3.

2 Methodology

In this section, we describe the problem and the machine learning methodology (Figure 1) to discover
a mathematical model for depositional ice growth. The depositional ice growth rate for a single ice
crystal growing from vapor has traditionally been modeled using the capacitance ice growth model
[9], which is sometimes modified to include surface kinetics [12]. This model is an ODE,

dm

dt
= 4πr(Si − 1)G(r, T, Si, α) (1)

where m is the mass of the crystal, r is the radius of the ice crystal, Si is the supersaturation with
respect to ice far from the crystal, and the function G(r, T, Si, α) represents the combined effects of
vapor and thermal diffusivity to the surface of the ice crystal. G(r, T, Si, α) is a function of r, the
ambient temperature T , Si, and surface attachment kinetics typically parameterized by a deposition
coefficient α. The deposition coefficient α has previously been parameterized as a saturation and
temperature dependent function in Nelson and Baker, 1996 [17]. Predicting ice growth in the
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levitation diffusion chamber amounts to solving an initial value problem, where the observed mass as
a function of time is given by

m(t) =

∫ t

0

dm

dt
dt+m0 (2)

If we knew the functional dependence of Eq 1, then this problem would be straightforward to solve.

Since the functional dependence for G(r, T, Si, α) is uncertain, however, we use a NODE model
to solve Eq 2. We assume two cases for prior physical knowledge based on past literature (Figure
1a). The first model makes a stronger assumption about the amount of prior physical knowledge to
include, and the second model learns a greater part of the ice growth model. In the first case, we use
a capacitance model for ice growth that assumes an unknown function for the deposition coefficient
α, which we refer to as the "strongly-constrained NODE" model. In the second case, we fit the ratio
of G relative to the expression for a spherical ice crystal assuming the continuum limit Gc (Eq. A9),
which we refer to as the "weakly-constrained NODE" model. In each case, we use prior physical
knowledge from Eq 1 and replace only the uncertain portion of the model with a neural network. For
the strongly-constrained NODE model, we assume the functional form for G(r, T, Si, α) is given by
Eq. A3, and we assume α is a function of temperature and supersaturation,

α = fα(Si, T |θα) (3)

where fα(Si, T |θα) represents a neural network that takes as input the saturation and temperature
and given the weights of the neural network θα predicts a value for α. For the weakly constrained
NODE model, we assume the ratio between G and Gc is given by a function of the temperature,
supersaturation, and mass of the ice crystal,

G

Gc
= fG(Si, T,m|θG). (4)

Parameterizing kinetics with a modified G is advantageous because it is more general, and it has
some measurement [15] and theoretical [18] backing. For both the strongly and weakly constrained
models, we use an MLP to parameterize the functional dependence, with 3 linear layers with 50
neurons in each layer, and ReLU activation functions after the first and second layers. Following
the third linear layer, we use a sigmoid activation function, as both functional forms are expected
to be constrained to a range of values (0 ≤ α ≤ 1 and 0 < G

Gc
≤ 2); without this constraint, the

NODE model is significantly harder to optimize against observations. We then integrate Eq. 1 using
an ODE solver (RK4, implemented in PyTorch with the torchdiffeq library [5]). Further details of
these models are provided in Section A.1.

We optimize the NODE model against the observational time series to reduce the distance between
the model and the observed time series (Figure 1b). Since we assume all 290 experimental mass time
series can be modeled with the same physical model, we optimize the NODE model across all time
series simultaneously. In cases where the time series are less than 500 s, we mask experimental data
such that it is not included in the calculation of the loss function. We minimize L2 loss between the
observed time series and the model,

L =

290∑
j=0

Tj∑
i=0

(
mj(t)

mj,0
− m̂j(t)

mj,0

)2

(5)

where j is the experiment number, and Tj is the length of the jth time series, and m̂j(t) indicates the
prediction from the NODE model. To minimize the loss function, we use the AdamW optimizer [19],
with a base learning rate of 0.01, which we train for 1000 epochs, with cosine decay [20].

Once the NODE model has been optimized against observations, we use symbolic regression to
derive functional forms for the trained neural networks (Figure 1c). Symbolic regression uses genetic
algorithms to search for equations that optimize accuracy while limiting model complexity. Here we
use the symbolic regression library PySR [21]. We use the observed values for Si and T , and the
initial mass m0 for each of the 290 experiments. These values are used as inputs for the trained neural
networks to determine the corresponding values for α for the strongly-constrained NODE model
(Eq. 3) and for G for the weakly-constrained NODE model (Eq. 4). To find a symbolic expression
for the function α in terms of Si and T , we use the binary operators for summation, multiplication,
exponentiation, division, and subtraction, and the unary operators log, exp, 1/x, square, cube, and
tanh, and run PySR for 100 generations. To fit a symbolic expression to G, we use the binary
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Figure 2: Functional dependence of α learned from synthetic data sets. a) Saturation and
temperature dependence of α parameterization from Nelson and Baker, 1996 [17]. b) Saturation
and temperature dependence from the trained NN for the synthetic data sets. c) Predictions from an
expression learned by symbolic regression from the trained NN for the synthetic data sets.

Table 1: Comparison of model performance on observational data. MSE loss between model and
observations is evaluated across all 290 time series.

Ice growth model MSE Loss # Exps. for which model performs best
Nelson and Baker, 1996 [17] 40742 47
Strongly-constrained NODE model 28153 89
Weakly-constrained NODE model 15249 154

operators for summation, multiplication, exponentiation, division, and subtraction, and the unary
operators 1/x, square, and cube, and run PySR for 100 generations. We use m, r, T , Si, and Gc as
input features, and target the prediction of G; this approach led to more accurate fits to the trained
neural network than finding a symbolic expression for the ratio G/Gc. Gc is given by Eq. A9, and
does not depend on unknown or unobserved physics, such as the shape of the growing ice crystals.

3 Results
We first test our method on synthetic data sets with a known functional form for the depositional
coefficient α based on [17]. After optimizing the strongly-constrained NODE model against the
synthetic data sets, we find that the model is able to reproduce the time series very accurately (Figure
A5 shows examples of a subset of time series compared to NODE model fits). We compare the
predicted values of α from the trained neural network αNN to those used to generate the synthetic
data set αNelson. The strongly-constrained NODE model is able to learn the functional dependence
for α that closely matches the one used to generate the synthetic data sets (Figure 2, left and middle
panels). In addition, when we use symbolic regression to learn a functional dependence for α from
the trained neural network, it closely matches the true dependence (Figure 2, right panel).

We next use our approach on the experimentally observed time series. Since we have no ground-truth
for the depositional ice growth model for the observational data sets, we compare the performance of
the weakly and strongly-constrained NODE models optimized against the experimental data sets with
the model from Nelson and Baker, 1996 [17] (Table 1). We evaluate the MSE loss between models
and observations across all 290 experiments (Eq. 5), as well as evaluating which model performs
best on the majority of individual experiments (determined by the lowest MSE loss for the individual
experiment). According to both metrics, the weakly-constrained NODE model outperforms the
Nelson and Baker, 1996 model and the strongly-constrained NODE model. The weakly-constrained
NODE model performs best on 154 out of 290 experiments.

In comparing the strongly-constrained NODE model optimized against the experimental data sets
with the observed mass ratios, in some cases, we find significant deviations between the observed
mass ratios and predicted mass ratios (Figure A6). The predicted values of α from the trained neural
network also differ significantly from those predicted by the functional form given in [17]. As the
strongly-constrained NODE model is not able to learn a functional dependence for α that reproduces
the mass ratio time series for the majority of the experiments, this suggests that a model including the
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Figure 3: Unknown physics learned by weakly-constrained NODE model from observations. a)
The transfer coefficient G learned by the weakly-constrained NODE model for the 290 experiments
compared with Gc (the transfer coefficient for the continuum case, assuming a spherical ice crystal). b)
Predictions from the trained neural network for G compared with the predictions from an expression
learned by symbolic regression from the trained neural networks (Eq. 6) for the 290 experiments.

deposition coefficient α may not be the optimal functional relationship to describe the depositional
ice growth process in these experiments. By contrast, when we optimize the weakly-constrained
NODE model against the experimental data sets, this generally reduces deviations between the
mass ratio time series and the predicted values for the mass ratios (Figure A6) compared to the
strongly-constrained NODE model. In addition, we can use the trained neural network to evaluate the
learned functional dependence of G compared with Gc (Figure 3a), and our model learns a consistent
functional dependence across the 290 experiments. While G is generally within a factor of 1.2 of Gc

for most experiments, the learned functional dependence indicates there is an additional dependence
on m that is not accounted for by Gc.

As described in the previous section, we use symbolic regression to determine a functional dependence
for G learned by the neural network. The learned expression for G is

G =
Gc

a+ b(Gc + cm)−1
(6)

where a = 0.6517688, b = 2.98707× 10−9, and c = 1000 are constants, m is the mass of the ice
crystal in kg, and Gc is given by Eq. A9. The predictions for this functional dependence closely
match the predictions from the neural network (Figure 3b).

4 Conclusions and Outlook
In this paper we have demonstrated the application of NODE’s and symbolic regression to learn
a mathematical model directly from multiple experimental time series. We validate our approach
to learning the unknown part of a partially known ODE using a synthetic data set with a known
functional dependence for the deposition coefficient α. We find a weakly-constrained NODE mode
is able to more accurately reproduce the majority of our experimental time series, suggesting that
prior parameterizations for surface kinetic effects as a deposition coefficient function may be too
restrictive. We instead propose a new functional dependence for G in Eq. 1 that more accurately
reproduces the experimental observations, and that can be expressed as a closed-form function using
symbolic regression (Eq. 6). Future work will focus on simultaneously learning parametric and
structural uncertainty in ice growth models [22]. When we included 17 additional experiments from
[14] in our analysis, which had higher uncertainty on Si (since these came from earlier experiments,
when the levitation diffusion chamber was not fully characterized), the NODE model struggled to
learn a consistent ice growth model across all experiments. Thus, future extensions of the equation
discovery approach we have developed here should also focus on robustly identifying outliers when
constraining ice growth models. This research contributes to the development of improved model
parameterizations for cloud processes, as processes related to ice formation in clouds are a significant
source of uncertainty in current climate models [8, 23].
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Figure A1: Depositional ice growth is an important process for ice formation in atmospheric clouds.
Ice crystals grow via direct deposition of water molecules from the vapor phase onto the ice surface.

A Appendix

A.1 Depositional Ice Growth Model

The depositional ice growth rate for a single ice crystal growing from vapor (Figure A1) in the
atmosphere has traditionally been modeled using the capacitance ice growth model, which describes
the growth of an ice crystal from the vapor phase [9]. The capacitance growth model, including
modifications for surface kinetic effects, can be written as an ordinary differential equation,

dm

dt
= 4πC(Si − 1)G(r, T, Si, α) (A1)

where C is the capacitance, Si is the ice supersaturation far from the crystal, and G represents the
combined effects of vapor and thermal diffusivity to the surface of the ice crystal. G is a function of
temperature, pressure, and the modified diffusivity D∗

v . The capacitance is a function that depends on
the geometry of the ice crystal; here we assume that C = r. The modified diffusivity is a function
of the diffusivity of water molecules in air Dv, the mean speed of molecules in the vapor v̄, the
molecular jump distance ∆r, a particle length scale (typically assumed to be proportional to the
radius of the ice crystal, r) and surface attachment kinetics typically parameterized by a deposition
coefficient α. Surface attachment kinetics refer to the effects of individual molecules attaching to the
surface of a growing crystal, which lead to differences in thermal and vapor diffusivity relative to the
continuum case (where the effects of individual molecules can be ignored). The deposition coefficient
has previously been parameterized as a saturation and temperature dependent function in [17] as

α =

(
slocal
scrit

)m

tanh

[(
scrit
slocal

)m]
(A2)

where slocal is the supersaturation immediately above the crystal surface, scrit is the temperature-
dependent critical supersaturation, and m is a parameter which relates to the surface of the ice crystals.
A value of m = 1 is used to represent spiral dislocation growth, while a value of m > 10 represents
ledge nucleation. This parameterization is used to represent complex surface processes that are not
fully represented by current theory.

The function G is given by

G =

[
RT∞

esat,i(T∞)D∗
vMw

+
Ls

k∗aT∞

(
LsMw

RT∞
− 1

)]−1

(A3)

Due to surface attachment effects, the diffusivity in Eq. A3 is assumed to be modified from the
continuum case, with the modified diffusivity expressed as

D∗
v =

Dv

r
r+∆r

+ Dv

rα

(
wπMw

RTa

)1/2
(A4)
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Table 2: Values of constants used in depositional ice growth model.
Name Symbol Value
Density of water ρw 1000 kg/m3

Density of ice ρi 910 kg/m3

Molecular mass of water Mw 18 ×10−3 kg
Thermal deposition coefficient αT 1
Latent heat of vaporization Lv 2.5×106 J/kg
Latent heat of sublimation Ls 2.837×106 J/kg
Acceleration due to gravity g 9.81 m/s2

Universal gas constant R 8.3144521 J/mole/K
Individual gas constant of air Ra 287.05 J/kg/K
Individual gas constant of water vapor Rv 461.51 J/kg/K
Specific heat capacity cp 1005
Mean free path of water molecules in air λa 8× 10−8 m
Vapor jump length ∆v 1.3 λa

Thermal jump length ∆T 2.16× 10−7 m

where Dv is the diffusivity of water molecules in air, r is the radius of the ice crystal, ∆r is the
vapor jump length, α is the deposition coefficient, w is the molecular speed of water in air, Mw is the
molecular weight of water, R is the universal gas constant, and Ta is the air temperature.

The modified thermal conductivity is given by

k∗a =
ka

a
a+∆T

+ ka

aαT ρcp

(
2πMa

RTa

)1/2
(A5)

Eq. A1 relies on a number of constants, which we summarize in Table 2. In addition, we assume that
the temperature dependence of saturation vapor pressure with respect to ice (in Pa) is given by [24],

esat,i(T ) = exp
(
a0 −

a1
T

+ a2Log(T )− a3T
)

(A6)

where a0 = 9.550426, a1 = 5723.265, a2 = 3.53068, and a3 = 0.00728332.

and the diffusivity of water vapor in air (in m2/s) is given by

Dv = 2.11× 10−5

(
T

T0

)1.94 (
p0
p

)
(A7)

where T0 = 273.15 K and p0 = 101325 Pa [9]. (Valid for -40 to 40 ◦C).

The thermal conductivity of air in Joules is given by

ka = 4.187× 10−3(5.69 + 0.017(T − 273.15)) (A8)

In the continuum limit for a spherical ice crystal, Eq. A3 reduces to

Gc =

[
RT∞

esat,i(T∞)DvMw
+

Ls

kaT∞

(
LsMw

RT∞
− 1

)]−1

(A9)

.

A.2 Levitation diffusion chamber data sets

Experimental data was taken in the Button Electrode Levitation (BEL) thermal gradient diffusion
chamber and were described in detail in [14, 15, 16]. Charged droplets are initially levitated between
two ice-coated parallel plates, with the bottom plate having an opposing direct current voltage, and the
top place an alternating current to stabilize particles horizontally. Due to differences in temperature
between the warmer, upper plate and colder, lower plate, a supersaturation gradient exists in the
chamber as a function of height. After the ice crystal nucleates, the voltage of the bottom plate is
automatically adjusted to maintain constant levitation of the ice crystal, with the measured voltage
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Figure A2: Overview of experimental data sets used in this analysis. Left: Saturation with
respect to ice and temperature at which experiments included in this analysis were performed. The
dashed line shows the temperature dependence of saturation with respect to liquid water, while the
dotted line show saturation with respect to ice. Symbols indicate whether ice crystals were nucleated
heterogeneously or homogeneously. Right: Mass ratios of all ice crystals as a function of time.

being directly proportional to the ice crystal’s mass as a function of time. The initial radius of
the particle r0 can be estimated from Mie theory using the diffraction pattern generated from the
scattering of light from a Helium Neon laser, thus determining the initial crystal mass m0. Deriving
the mass as a function of time from the voltage measurement requires the assumption that ice is
initially spherical, when it is likely poly-crystalline when it is initially nucleated [25]. Since the
uncertainty in derived mass is largely dominated by uncertainty in the initial size of the particle[14],
we optimize the NODE model against m/m0 rather than m.

Time series of the voltage of the lower plate are recorded at a 1 Hz frequency during the course of
the experiments. Data sets consist of the measured temperature, pressure, supersaturation, initial
ice particle radius observed from light scattering, and the voltage of the lower plate (proportional
to the ice particle mass). Temperature uncertainty in the chamber is on the order of <1% [14].
Supersaturation uncertainty is estimated to be on the order of 10% [15]. Because supersaturation
uncertainty is due to the location of the ice crystal in the chamber, it is likely to show a bias in one
direction (typically low) although best estimates for the true value of the supersaturation are used in
these data sets [14, 15, 16].

A.3 Synthetic data sets

To evaluate the method of using physics-informed neural networks to discover the functional depen-
dence of ice growth from the mass ratios, we create synthetic data sets with a known depositional
growth models. To simulate synthetic data, we start with the observed Si, T , and m0 from the 290
experiments that are shown in Figure A2. Given these initial conditions for m0, Si, T , we assume
depositional ice growth is described by Eq. A1, with the deposition coefficient function given by
Nelson and Baker [17] (Eq. A2). We use an ODE solver to integrate Eq. A1 to predict the evolution
of the mass ratio for the same length as the experimentally measured time series (up to 500 s). Since
the measured mass ratios in the levitation diffusion chamber have high frequency noise, we also
use singular spectrum analysis (SSA) to determine realistic noise for the observed mass ratios. SSA
decomposes time series into a sum of temporal principal components which account for a decreasing
fraction of the variance in the original time series. Here we use a window size of 60 s and assume
trailing eigenmodes represent the measurement uncertainty on m

m0
. An example of the simulated

observations for one time series is given in Figure A3, showing the ODE solution and the SSA
reconstruction from the trailing eigenmodes used to estimate measurement uncertainty. All 290
generated synthetic mass time series are shown in Figure A4, which also shows the values for α
predicted by Eq. A2 used in generating the synthetic data sets.
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Figure A3: Example of synthetic time series for mass ratios, with measurement uncertainty derived
from trailing eigenmodes of SSA analysis for observed time series.

Figure A4: Synthetic data sets. Left: Values for α predicted by Eq. A2 for the Si and T conditions
for the 290 experimental data sets (used as initial conditions in creating the synthetic mass time
series). Right: Times series of mass ratios for all of the synthetic data.
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A.4 NODE Model Predictions

Figure A5: Model predictions for individual experiments for the synthetic data sets. Synthetic
mass ratios and strongly-constrained NODE model predictions for a subset of the time series.
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Figure A6: Model predictions for individual experiments for the real data sets. Nelson and
Baker model predictions, strongly-constrained NODE model predictions, and weakly-constrained
NODE model predictions compared to observations for a subset of the time series.
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