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Abstract

We introduce a method for contactless manipulation of objects in three-dimensional
space using controlled fluid streams. To achieve this, we train a neural network
controller in a differentiable simulation and evaluate it in a simulated environment
consisting of a grid of vertical emitters. By carrying out various horizontal displace-
ment tasks such as moving objects to specific positions while reacting to external
perturbations, we demonstrate that a controller, trained with a limited number of
iterations, can generalise to longer episodes and learn the behavior of fluid-solid
interactions. We are in the process of building a floor-standing device that embodies
the proposed method, and we describe its key components and design decisions
towards displacing and manipulating delicate objects on the device’s surface.

1 Introduction

Contactless object manipulation has historically been limited to very small objects, as in the case of
acoustic levitation (Chen et al., 2019), or to objects with special properties such as magnetism (Xie
et al., 2021). Furthermore, while there has been some research pushing the boundaries of air-based
displacement of objects (Iwaki et al., 2011; Bhardwaj et al., 2024), much of the technology remains
similar to simple “air bearings,” like the ones used in air-hockey tables (Laurent and Moon, 2015).

Real-time control of systems involving fluids and solids present inherent challenges due to the
complex dynamics arising from their interactions and high-dimensional state space. The nonlinear
nature of these interactions make the the application of classic control approaches, such as PID, highly
impractical. In this paper, we overcome this difficulty by leveraging a differentiable physics simulator
in conjunction with deep learning techniques. The majority of the work in the field of fluid-directed
object manipulation exists in purely simulated environments (Ramos et al., 2022; Freivalds et al.,
2024). A prominent work by Ma et al. (2018) uses reinforcement learning (RL) to train movable fluid
spouts to interact with rigid objects in a two-dimensional environment. Recently, Google DeepMind
published their work on fluid-directed rigid body control on a bench-top device called “Box o’ Flows”
(Bhardwaj et al., 2024). It showcases the potential of RL in implementing fluid-based control by
using an array of spouts that can perform complex contactless manipulations with rigid objects in a
3D environment.

Our approach for training control policies is based on differentiable physics (DP) simulations. Ad-
vances in DP (Thuerey et al., 2021) have demonstrated significant potential for addressing simulated
inverse problems and complex control applications (Hu et al., 2019; Holl et al., 2020; Du et al., 2021;
Fang et al., 2022; Ramos et al., 2022; Teikmanis et al., 2023; Tathawadekar et al., 2023). In the
context of computational fluid-solid interactions, there are several examples of applied DP (Ramos
et al., 2022; Ma et al., 2021; Hu et al., 2019; Du et al., 2021; Li et al., 2023). However, to our
knowledge, there is no existing research where DP is applied for controlling real devices in which the
fluid serves as the acting agent.
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Figure 1: A device prototype for air-based manipulation of rigid objects (left), and its schematic
design (right). The device consists of a tabletop array of individually controllable nozzles that
output compressed air. An RGBD camera is placed above the table to observe the movement. This
information is used by a neural network controller to regulate the fluid emitters to complete various
displacement tasks.

In this article, we describe our work on a device designed for fluid-directed manipulation of objects,
shown in Fig. 1. It consists of upward facing nozzles arranged in a grid. The output pressure
of the entire grid is controllable by a neural network controller, and each nozzle can be opened
and closed separately. The objective of this research is to provide a proof-of-concept for diverse,
three-dimensional object manipulation with air flows, using machine learning methods that leverage
differentiable simulations. We demonstrate that the controller can be successfully trained to move
objects across the table.

2 Simulation

The simulation domain is designed as a cuboid with all boundaries open, except for the bottom
boundary, which functions as a solid surface. On this surface, emitters are arranged in a grid, each
capable of emitting fluid at different velocities. Within this setup, one or more rigid objects are placed
to demonstrate controlled fluid-solid interactions. Section 4 features examples with one and two
spherical objects with a radius of 10 units, but the approach can handle any number of such objects.

The system behaviour is modelled using fluid dynamics within a bounded domain, and is governed
by the incompressible Navier-Stokes (NS) equations and is implemented using the differentiable
PDE solver and simulation toolkit PhiFlow (Holl et al., 2020). It supports fluid simulations and
one-way coupling with solids, i.e., solid objects influence the fluid but not vice-versa. To enable full
coupling, we employ the implementation from Ramos et al. (Ramos et al., 2022), adapted for 3D
simulations. With this approach, we can calculate the force exerted by the fluid on solids. For the
current implementation, we simulate only spherical objects, for which we implement Newtonian
motion and collision handling using PhiFlow’s integrated solver.

The domain is discretized at a 32× 32× 32 resolution, which is the maximum for training on one
A100 GPU card. The emitters are modelled as boundary conditions on the bottom plane of the
domain. Each emitter functions as an inlet of a small area, producing fluid velocities as prescribed by
the controller for each time step.

3 Neural Network Controller

The fluid velocities are controlled by a neural network controller, which takes the position and velocity
of the objects as inputs, and outputs the required velocities for each emitter to guide the objects to
their target locations. In a control scenario, the process depicted in Fig. 2 is applied for each time
step.
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Figure 2: Differentiable control diagram.
Shown is one time step of the controlled sim-
ulation. The differentiable simulator (bottom)
operates on the velocity field v containing fluid
velocity vectors for each spatial location at a time
step k, the object’s 3D position x, and the control
signal u, corresponding to the emitter velocity.
The neural network controller (top) receives the
object’s position from the simulator at the pre-
vious time step (k − 1), its own hidden state h,
and the goal position of the controlled objects in
order to update its hidden state and the control
signal.
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Figure 3: Neural network architecture. We
use a recurrent convolutional neural network
(RCNN) that operates on an input grid of (8× 8,
in this case) fluid emitters with a corresponding
feature map of Mθ elements, and a hidden state
of size Mh. Dropout is applied to the hidden
state to enhance generalisation to longer sim-
ulations. Two output heads performing linear
projection are attached to the last layer, produc-
ing emitter velocities (range-limited via sigmoid
activation) and an updated hidden state for the
next time step by applying a scaled residual con-
nection.

The neural network architecture is depicted in Fig. 3. It is designed as a recurrent convolutional
network, receiving the object state representation and its own internal state as inputs at each time
step. It produces an emitter control signal matrix and the next internal state tensor as outputs, and
operates on spatial data with a shape corresponding to the emitter grid. By design, convolutions are
well suited for such spatial data processing. During training, this structure is unrolled through time,
and the loss function is calculated depending on xN , where N is the number of time steps. Gradient
based training is performed to adjust the neural network controller’s parameters to minimise the
loss. Recurrence in the neural network is implemented as scaled residual connections (Zakovskis
et al., 2023) similar to ResNet (He et al., 2016). This design together with application of truncated
backpropagation through time, where simulation segments of 80 steps are backpropagated, is used to
facilitate stable training.

To fit the convolutional structure, the object state is given to the neural network as a matrix of the
same size as the emitter grid and several feature maps. In total, there are seven feature maps per
controlled object giving the object’s position, velocity, and the goal position. To specify the position,
the object is rendered onto the matrix using soft boundaries giving the volume fraction occupied by
the object, similar to (Takahashi et al., 2021). The goal position xg is represented as a distance field.
Object velocity is supplied as the difference of two rendered positions where the second one shows
the object displaced by its velocity vector. Such representations support gradient backpropagation.

To train the system, we initialise objects with randomised locations and velocities, conduct simulations,
and use the object trajectory for loss calculation. The loss function primarily expresses the distance
of the object to the desired target location xg with additional terms:

L = ||xN − xg||2 + α

N∑
k=1

||xk − xg||2 + β

N∑
k=1

||uk||2. (1)

The first term ensures that the final object position is close to the target position. The second term
keeps all intermediate positions near the target, effectively maximising the object’s speed towards
the target and maintaining its position once it arrives. We experimentally set α = 1/N to achieve a
good balance with the first and most important term. The third term aims to minimise the total energy
expended by the emitters throughout the episode. We set a small weight β = 0.001 for this term
during training.
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Figure 4: Controlled displacement of two simulated objects. (a) The solid lines in the top left
shows the trajectory of the objects as they are moved by the simulated fluid. The fluid is emitted from
an 8× 8 grid, and is visualised as a grey plume. (b) Sample trajectories of moved two objects, when
the red object should reach the point (−10, 50) on the left, and the blue object should (110, 50) on
the right. (c) Percentage by which the actual path deviates from a straight line, for 100 trajectories.
Animations can be found in the accompanied video.

All steps of the simulation are differentiable, and we employ gradient descent with the Adam optimiser
(Kingma and Ba, 2015) using a learning rate of 0.0001. Based on experiments, the training is stable
for values between 0.001 and 0.0001, resulting in minor differences in training speed. Training is
performed for 2000 iterations, which takes about about 14 hours on a single Nvidia A100 GPU.

4 Controller Evaluation

We evaluate the trained controller in three different scenarios that showcase the capabilities to carry
out versatile object displacement using controlled fluid flows: a) hold the object in the given position
above the table b) move the object to a desired location, c) move two objects simultaneously to
different target locations. We also analyse the system’s robustness against external perturbations
such as a side current. A horizontal current of a random direction and magnitude (up to 20% of the
emitter velocity) is applied during both training and testing. During these evaluations, simulations
are conducted over 600 time steps, which is sufficient to accomplish the specified tasks. The training
succeeds for all the considered tasks yielding positive results in simulation. The most difficult task is
to control two objects simultaneously. The results of this task are depicted in Fig. 4 where we see that
the controller has learnt to correctly move both objects to their respective targets in relatively straight
trajectories except in cases when both objects come into close proximity. In these cases, the emitters
are able to separate them successfully, as demonstrated in the video1.

5 Conclusion

We have given an overview of our ongoing work on a floor-standing device for contactless manip-
ulation of rigid objects. We have developed a method to train a neural network controller that can
perform object displacement tasks using an array of fixed vertical fluid emitters. This approach has
demonstrated versatile control tasks across multiple simulated scenarios. Our controller has also
proven robust against external disturbances, which is an essential feature for bridging the gap between
simulations and real-world devices. The controller, trained by leveraging a differentiable simulation,
reaches good performance within just 2000 iterations and can handle much longer episodes than
those used during training. A limitation of the current implementation is that it can only handle
spherical objects. To support arbitrary objects, more advanced collision detection and fluid-rigid
coupling methods need to be incorporated. In future work, we will develop sim-to-real strategies to
implement the described control scenarios on the physical device.

1https://www.youtube.com/watch?v=argalwINGwc
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